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Background: Brain metastasis from breast cancer (BC) is an important cause of BC-related death. The 
present study aimed to identify markers of brain metastasis from BC.
Methods: Datasets were downloaded from the public databases Gene Expression Omnibus (GEO) and The 
Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) was performed 
to identify metastasis-associated genes (MAGs). Least absolute shrinkage and selection operator (LASSO) 
Cox proportional hazards regression models were constructed for screening key MAGs. Survival analysis and 
receiver operating characteristic (ROC) curves were used for evaluating the prognostic value. The factors 
associated with tumor metastasis were integrated to create a nomogram of TCGA data using R software. 
Gene Set Enrichment Analyses (GSEA) was performed for detecting the potential mechanisms of identified 
MAGs. Immunohistochemistry (IHC) was used to verify the expression of the key genes in clinical samples.
Results: The genes in 2 modules were identified to be significantly associated with metastasis through 
WGCNA. LASSO Cox proportional hazards regression models were constructed successfully. Subsequently, 
a clinical prediction model was constructed, and a nomogram was mapped, which had better sensitivity and 
specificity for BC metastasis. Two key genes, discs large homolog 3 (DLG3) and growth factor independence 
1 (GFI1), were highly expressed in clinical samples, and the expression of these 2 genes was associated with 
patients’ survival time.
Conclusions: We successfully constructed a clinical prediction model for brain metastasis from BC, and 
identified that the expression of DLG3 and GFI1 were strongly associated with brain metastasis from BC.
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Introduction

Breast cancer (BC) is one of the most common neoplasms, 
and the incidence of BC ranks first among female malignant 
tumors (1). It is estimated that there were 271,270 new 
BC cases in the USA in 2019, and the estimated number 
of deaths was as high as 42,260 (2). BC’s incidence is 
dramatically increasing year by year, showing a clear 
younger trend, posing a serious threat to women’s 
physical and mental health. BC is highly heterogeneous, 
and different molecular subtypes of BC have different 
clinical characteristics and prognosis, which increases 
the difficulty of clinical diagnosis and treatment (3).  
At present, BC’s clinical treatment mainly includes 
chemotherapy, radiotherapy, surgery, and targeted therapy. 
With the continuous advancements in medical standards, 
BC’s curative effect has been significantly improved, and 
quality of life has improved dramatically for patients (4). 
However, due to the low awareness of cancer prevention 
among the general population, many patients are already 
at the advanced stages of BC when they are diagnosed. 
The prognosis of advanced BC is poor, and is usually 
accompanied by cancer metastasis. Even if patients with 
advanced BC have been cured, the recurrence rate of breast 
carcinoma is high. Recurrence and metastasis are the main 
causes of BC related death (1). Therefore, periodical checks 
for BC and early treatment can effectively reduce mortality. 
For clinicians, discovering more accurate diagnostic 
methods has become a critical priority.

BC is the second most common cause of brain metastasis 
after lung cancer (1). With the improvements in diagnosis 
and treatment, BC patients’ survival time with recurrence 
and metastasis has been significantly prolonged, which 
significantly increases the chances of brain metastasis in 
patients. The incidence of brain metastasis in BC patients 
is increasing year by year. BC cases with brain metastasis 
account for 15–30% of BC patients with metastasis (5). 
The current treatment plan is not effective for BC patients 
with brain metastasis, and patients have an extremely poor 
prognosis. BC patients with brain metastases who do not 
accept any treatment have an overall survival (OS) 1– 
2 months. After active treatment, patients’ median OS time 
generally does not exceed 2 years (1,6). Previous research 
has shown that the major risk factors for BC with brain 
metastasis are age, hormone receptor expression [estrogen 
receptor (ER), progesterone receptor (PR)], human 
epidermal growth factor receptor 2 (HER2), extracranial 
metastasis, number of brain metastases, histological grade, 

and pathological stage (7,8). 
Unfortunately, the results of drug treatments for targets 

such as ER, PR, and HER2 have failed to prevent the 
occurrence of brain metastases (4,9,10) effectively. HER2-
directed antibodies poorly penetrate the blood brain barrier 
and appear to provide an unclear benefit for brain metastasis 
patients (11). Some studies have suggested an increased 
propensity for central nervous system metastasis among 
triple negative BC (TNBC), for which targeted therapies 
are ineffective (10,12,13). Patient survival time and the 
incidence of metastasis still cannot be effectively improved. 
Therefore, patients with BC brain metastases need better 
molecular therapeutic targets.

In the present study, we applied univariate Cox regression 
analysis to analyze the association between metastasis-
associated genes (MAGs) and brain metastasis from BC. 
Weighted gene co-expression network analysis (WGCNA) 
was performed to screen the genes which were associated 
with brain metastases from BC. The least absolute shrinkage 
and selection operator (LASSO) was used to identify key 
genes associated with oncology metastasis, and a nomogram 
was constructed for predicting tumor metastasis. Finally, 
2 key genes were screened from MAGs and were further 
verified in clinical samples. We present the following article 
in accordance with the MDAR reporting checklist (available 
at http://dx.doi.org/10.21037/gs-20-767).

Methods

Data collection

The gene expression matrix of 24 BC with brain metastasis 
samples and primary BC samples from the GSE14690 
dataset (14) was obtained from the Gene Expression 
Omnibus (GEO) database (doi: 10.1186/bcr2603). The raw 
gene expression data of BC and normal control samples 
were obtained from The Cancer Genome Atlas (TCGA)-
BRCA. An external dataset from TCGA was used as a 
verification group. 

WGCNA of GSE14690 dataset

In the WGCNA algorithm, the weighted gene co-
expression network construction’s premise is that the 
connection of the gene network should obey the scale-free 
distribution. In the present study, the weighting coefficient 
(P) was selected to infinitely approach the scale-free 
network distribution. The selection of the soft threshold 

http://dx.doi.org/10.21037/gs-20-767)
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should satisfy the following conditions: the correlation 
coefficient between the log(k) of the number of connected 
nodes and the log[p(k)] of the occurrence probability of the 
node should reach at least 0.8. In this study, there were 5 
main steps in the construction of the gene co-expression 
network:

(I) Calculate the similarity matrix between genes.

( ) ( , )
unsigned

ijS cor i j= 	 [1]

The correlation coefficient between gene i and gene j 
was Sij, and the similarity matrix S=[Sij].

(II) Define the adjacency function.

( , ) | |ij ij ija power s s ββ= = 	 [2]

The soft threshold was defined for describing the 
association between any 2 genes. The adjacency coefficient 
aij was obtained by exponentially weighting each gene pair’s 
correlation coefficient to the power of β, and β was defined 
as the soft threshold. The soft threshold was set as 0.8, and 
the similarity matrix was converted to an adjacency matrix. 

(III) Calculate the degree of dissimilarity between nodes 
and transform the adjacency matrix into a topological 
matrix.

To make the module more in line with biological 
characteristics, WGCNA uses a topological overlap measure 
(TOM) to calculate the degree of the correlation between 2 
genes in WGCNA.

[ ]
{ , } 1

ij ij
ij

i j ij

l a
min k k a

ω
+

Ω = =
+ −

	 [3]

ij iu jul a aµ=∑ 	 [4]

ij iuk aµ=∑ 	 [5]

In the above formula, lij represents the sum of the 
product of the adjacency coefficients of the nodes connected 
to both genes i and j, ki represents the sum of the adjacency 
coefficients of the nodes individually connected to the gene 
i, and kj represents the sum of the adjacency coefficients of 
the nodes individually connected to the gene j. After the 
adjacency matrix was converted to a topological matrix, 
the degree of dissimilarity between nodes was measured by 

1ij ijdω ω= − . 

(IV) Identify gene modules through cluster analysis.
To ensure that the genes in the modules were highly 

correlated, hierarchical clustering of genes based on 
the dissimilarity of the TOM matrix was performed in 
WGCNA to construct a hierarchical clustering tree. The 
static tree cut method was used in this study.

(V) Explore the association between modules and 
phenotypes.

The module eigengene (ME) was calculated to detect 
the module’s overall level of gene expression. For a certain 
gene, the correlation between the expression of the gene in 
all samples and the module’s characteristic value was used to 
measure the importance of this gene in the module (module 
membership, MM). Here, the relationship between the 
module and the phenotype was evaluated by calculating the 
correlation coefficient between the module’s characteristic 
value and the phenotype variable. Also, according to 
different phenotype groups, the t-test was used to calculate 
the difference in each gene expression between the different 
groups to obtain different P values, and the P values were 
log10 transformed to obtain gene significance (GS). The 
average of the GS of each gene in a certain gene module 
was calculated to get the significance of a certain module 
(module significance, MS).

Construction of LASSO Cox proportional hazards 
regression models

The genes from the modules with most MS were then 
analyzed through LASSO Cox proportional hazards 
regression models to screen MAGs. All of the samples in 
LASSO Cox proportional hazards regression models were 
from the TCGA-BRCA database. The sample composition 
of the Cox proportional hazards model was: 

( , , ), 1, 2...,i i iT x i nδ = 	 [6]

( )i i lI T Cδ = ≤  	 [7]

In the formula above, n was the sample size, Ti and Ci 
respectively were the survival time and censorship time of 
the individual i, and δi was the event variable (δi=1 indicated 
that the sample had reached the end of the study, and δi=0 
indicated that the sample was still being followed up).

The regression coefficients were estimated using the 
partial likelihood function estimation method, and the 
following formula calculated the log partial likelihood 
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function:

{ }1 1( ) log ( )exp( )n T n T
n i i i j J l il x I T T xβ δ β β= = = − ≥ ∑ ∑       [8]

Then the LASSO method was applied to the Cox 
proportional hazards model, and the following formula 
calculated the partial likelihood function with penalty: 

1
1 ( ) | |p

n j jl
n

β λ β=− + ∑ 	 [9]

The parameter λ was used to adjust the model. When 
λ was small, there were too many variables in the model, 
and the model was not sparse enough, resulting in a high 
possibility of overfitting. When λ increased, the regression 
coefficient with low correlation was compressed to 0, and 
the corresponding variable exited the model so that the 
effect of a variable, feature selection, and estimation could 
be realized. However, if λ were too large, it would lead to 
a substantial deviation in estimating the large regression 
coefficient. Therefore, the λ corresponding to the minimum 
partial likelihood function was selected to construct the 
model, and the following formula calculated the risk score 
of the patient in the model:

1 1 2 2 p pRisk score x x xβ β β= + + 	 [10]

Where β i was the non-zero LASSO coeff icient 
corresponding to the minimum λ value, and xi was the gene 
expression level corresponding to the non-zero LASSO 
coefficient.

The 10-fold cross-validation method was used to test 
the accuracy of algorithms and models. The dataset was 
randomly divided into 10 parts, 9 of which were used as 
training data in turn, and the remaining 1 was set as test 
data. The average value of the results of 10 verifications 
was used to estimate the accuracy of the algorithm to 
obtain a higher accuracy rate and reduce the risk of model 
overfitting. The glmnet package from R software was used 
to construct a multi-gene prognostic prediction model for 
BC. The function glmnet was used to generate the results of 
model fitting. The function cv.glmnet was used to perform 
10-fold cross-validation of the model corresponding to each 
λ to calculate the value of the logarithmic partial likelihood 
function corresponding to each λ. The model with the λ 
value corresponding to the smallest logarithmic partial 
likelihood function value was selected.

The construction and evaluation of the nomogram

The factors which were related to cancer metastasis were 
integrated to construct the nomogram of TCGA data 
through R software. The returned samples were obtained by 
bootstrap self-extraction and validated by calculation. The 
C-index of the prediction model was then calculated. The 
capacity was further evaluated and quantified by calculating 
the level to which the C-index and baseline time proposed 
by the nomogram in the standard curve. Finally, a receiver 
operating characteristic (ROC) curve of brain metastasis 
from BC was generated to evaluate the nomogram’s 
accuracy.

Gene set enrichment analysis (GSEA)

In order to detect the potential molecular mechanisms of 
our screened MAGs, GSEA (15,16) was conducted to screen 
enriched terms predicted to be associated with the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway in 
C2, and a gene set that contained genes was annotated by 
the same Gene Ontology (GO) terms in C5. Both P<0.05 
and a false discovery rate (FDR) <0.05 were considered 
statistically significant.

Immunohistochemistry (IHC)

All of the 103 human primary BC surgical tissue specimens 
in the present study were available as formal in fixed-paraffin 
embedded (FFPE) tumor blocks, and the information of 
all the clinical samples was collected. Written informed 
consent was obtained from all participants. Patients were 
diagnosed with cerebral metastases from BC, as determined 
by computed tomography (CT) and magnetic resonance 
imaging (MRI). The primary antibody against DLG3 was 
obtained from Abcam (ab254634, 1:1,000), and the primary 
antibody against GFI1 was obtained from Sabbiotech 
(#47575, 1:200). After the addition of the primary antibody, 
sections were incubated at 4 ℃ overnight. After washing 3 
times with phosphate-buffered saline (PBS), sections were 
treated with an immunohistochemistry kit according to 
the manufacturer’s instructions (G1211, Servicebio). The 
color was developed by 3'-diaminobenzidine (DAB). Two 
pathologists who were blinded to the protocol evaluated 
the immunostaining. For DLG3, scores were determined 
by staining intensity in tissue samples (0, none; 1, weak; 2, 
moderate; 3, strong) multiplied by the percentage of cell 
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staining (positive cells ≤25% of the cells: 1; 26–50%: 2; 
51–75%: 3; ≥75%: 4). The scope of this value was 0–12. 
The median value of scores was used to determine the cut-
off. Tissue samples with scores above the cut-off value were 
considered to express the indicated gene and vice versa 
highly. All procedures performed in this study involving 
human participants were in accordance with the Declaration 
of Helsinki (as revised in 2013) and the study was approved 
by the ethics committee of Tianjin Medical University 
General Hospital (IRB2020-WZ-118). Written informed 
consent was obtained from each participant included in the 
study.

Survival analysis

A Student’s t-test was used for paired data. ANOVA 
examined continuous variables. Categorical variables were 
analyzed through either the Fisher’s exact test or χ2 test. 
Kaplan-Meier analysis was used to evaluate the model’s 
prognostic prediction effect when the test set, validation set, 
and total set were divided into high-risk groups and low-
risk groups. The log-rank test was used to test the statistical 
significance of survival curve differences. Univariate and 
multivariate Cox regression analysis was used to verify 
whether the risk coefficient was an independent predictor 
of BC OS. ROC curves were used to evaluate the accuracy 
of survival analysis by using the survival ROC package in 
R. The Kruskal-Wallis test was performed to detect the 
relationship between clinical characteristics and risk scores.

Results

WGCNA construction and key module identification

The gene expression profiling and clinical features were 
integrated as the input dataset; then the dendrogram was 
constructed (Figure 1A). After 3 outlier samples were 
discarded, WGCNA was constructed based on the 1,488 
most variable genes. The soft threshold power was set as 9 
to make R2=0.808, ensuring the co-expression network was 
a scale-free network (Figure 1B). After the soft-thresholding 
was determined, the co-expression network was constructed. 
The minimum number was set to 50. Dynamic tree 
shearing was used to divide the modules, and the abline 
was set as 0.25. The modules of similar special genes were 
merged in the gene cluster dendrogram, then 2 modules 
were obtained (Figure 2A). In the gene cluster dendrogram, 
each color represented a different module. Analysis of 

relevance between key genes and clinical features was 
constructed in a heat map (Figure 2B). The grey module and 
turquoise module’s correlation coefficient was the highest, 
indicating that the genes in these 2 modules were most 
related to tumor metastasis. The genes in these 2 modules 
were selected for further research.

Identification of key genes and survival analysis

LASSO was performed for the subsequent selection of the 
52 genes (Figure 3). Ten-fold cross-validation mean was 
used to assess λ. When λ=0.024, the error rate reached the 
minimum and the MAGs were screened. Kaplan-Meier 
survival analysis was performed to evaluate the prognostic 
prediction effect of the identified MAGs when the test 
set, validation set, and total set were divided into high-risk 
groups and low-risk groups. The risk scores and survival 
time of the samples are shown (Figure 4). 

We detected  the  as soc ia t ion  between c l in ica l 
characteristics and risk scores using the Kruskal-Wallis 
test. As shown in Figure 4, the disease stage and T stage 
were significantly related to risk scores. In the training 
set, test and total set (Figure 5), P<0.01 indicated that the 
survival curve difference was statistically significant. The 
ROC curve was then used to evaluate the accuracy of the 
survival analysis. In the training set, test and total set, the 
AUC was 0.731, 0.651, and 0.667, respectively, indicating 
that the prediction effect was good. To further verify the 
prediction effect of the MAGs, another external dataset 
from TCGA was used as a verification group. The samples 
were divided into low-risk groups and high-risk groups 
based on risk scores. The survival analysis results showed 
that the risk scores were significantly related to the survival 
time of patients. The area under the ROC curve was 0.601, 
indicating that our results were reliable. Moreover, the risk 
scores were significantly associated with the histological 
grade of the patients (Figure S1).

Establishment and evaluation of clinical predictive models

Univariate and multivariate Cox regression was performed 
based on MAGs and clinical information to establish the 
nomogram. Considering that in the multivariate Cox 
regression, only age and MAGs were the significant factors 
(Figure 6), these 2 factors were applied in the establishment 
of the nomogram. Factors were given scores in the 
nomogram. The corresponding score was added to get a 

https://cdn.amegroups.cn/static/public/GS-20-767-Supplementary.pdf
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total score according to each prognostic factor (Figure 7). 
The model’s predictive power was evaluated and quantified 
by measuring the degree of fit between the baseline time 
predicted through the nomogram and the C-index. It was 
observed from the 3- and 5-year metastasis calibration 
curves illustrated in Figure 7 that the nomogram had a 
good predictive ability for metastasis. Also, the risk scores 
of postoperative metastasis of patients were calculated, and 
an ROC curve was plotted (Figure 7). For the ROC curve, 
the area under the curve was 0.737, indicating that the 
nomogram had good predictive accuracy for metastasis. 

GSEA analysis for MAGs

To investigate the biological characteristics of the MAGs, a 
GSEA assay was performed. The most significant KEGG 
pathways were proteoglycans in cancer, RAP1 signaling 
pathway, and ERBB signaling pathway (Figure 8A).  
The most significant biological process terms were 
nervous system process, positive regulation of peptidyl-
tyrosine phosphorylation, and positive regulation of ERK1 
and ERK2 cascade (Figure 8B). The most significant 
cell component terms were receptor complex, intrinsic 
component of plasma, and membrane Golgi apparatus 
(Figure 8C). The most significant molecular function terms 
were transmembrane receptor protein tyrosine kinase 
activity, protein tyrosine kinase activity, and transmembrane 
signaling receptor activity (Figure 8D).

Verification of key genes in clinical samples

The 103 patients were all female, ranging in age from 25 
to 77 years old, with median age at initial BC diagnosis 
of 49 years old. The relevance of clinical information 
and gene expression was further analyzed. In the 103 BC 
patients, high expression of DLG3 in primary breast tumor 
was significantly related to lymph node (LN) metastasis 
and histological grade (Table 1). The results of univariate 
and multivariate analysis of clinicopathological factors for 
OS and recurrence-free survival (RFS) also revealed that 
high expression of DLG3 in primary breast tumor was 
significantly related to brain metastasis from BC (Table 2). 
The median time to OS was 60 months [95% confidence 
interval (CI): 41.785, 78.215] in the low DLG3 expression 
group (n=32) and 36 months (95% CI: 25.126, 46.874) 
in the high DLG3 expression group (n=71) of BC tissues 
(P<0.001). The median time to RFS for the DLG3 low 
expression group (n=32) was 50 months (95% CI: 24.749, 
75.251), and 24 months (95% CI: 19.908, 28.092) for the 
DLG3 high expression group (n=71; P<0.001). To further 
evaluate the predictive effect of DLG3 expression on 
metastasis, IHC was performed to detect the expression 
of DLG3 in BC samples and normal samples. As shown 
in Figure 9, DLG3 was significantly overexpressed in 
tumor samples (P<0.001). Moreover, high expression of 
DLG3 was significantly related to short survival time. The 
expression of another key MAG, GFI1, was also detected 
by IHC in tumor and normal tissues. The expression of 

Figure 1 The gene expression profiling and clinical features were integrated as the input dataset. (A) Sample tree of the samples in the 
GSE14690 dataset. (B) Determination of soft-thresholding power in the WGCNA. WGCNA, weighted gene co-expression network 
analysis.
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Figure 2 The modules of genes were merged in the gene cluster dendrogram and then analysis of relevance between key genes and clinical 
features was constructed. (A) The merged modules with the high similarity of feature genes in the gene cluster dendrogram. (B) A heat map 
created by analyzing the correlation between clinical information and key genes.

A

B

Gene dendrogram and module colors
H

ei
gh

t

Module

Merged module

Module-trait relationships

Metastasis
Prim

ary

0.092
(0.6)

0.14
(0.4)

0.15
(0.4)

0.28
(0.1)

−0.092
(0.6)

−0.14
(0.4)

−0.15
(0.4)

−0.28
(0.1)

MEbrown 

MEblue

MEturquoise

MEgrey

1.0

0.5

0.0

−0.5

−1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3



931Gland Surgery, Vol 10, No 3 March 2021

© Gland Surgery. All rights reserved.   Gland Surg 2021;10(3):924-942 | http://dx.doi.org/10.21037/gs-20-767

GFI1 was also overexpressed in BC samples (Figure 10), and 
high expression of GFI1 was significantly related to high 
expression of DLG3 (χ2=14.264, P<0.001).

Discussion

Brain metastasis affects approximately 10% of cancer 
patients (17-19). Even minor lesions can result in 
neurological dysfunction, and the median survival time 
of brain metastasis patients is very short (19). The 2 main 
sources of brain metastasis are adenocarcinoma of the lung 
or breast. In BC, long-term remission is usually required 
before long-term recurrence (20,21), which indicates that 
BC cells initially lack sufficient ability to grow in distant 
organs, but develop under the selective pressure of the 
microenvironment of different organs. BC metastasis often 
spreads widely in the same organ, earlier than in other 
organs, while brain metastasis is often a late event (17).  
Therefore, early prevention is important for brain 
metastasis from BC.

Previous studies have identified many risk factors for 
brain metastasis. However, the results are often inconsistent 
and the conclusions are quite different. Moreover, some 
studies have obvious selection bias, which leads to low 
reliability of the conclusions (22,23). Other studies included 
fewer eligible cases, which is very important for brain 
metastasis from BC (24,25). Age is also one of the most 
widely reported factors, but is still controversial (17). In 
a retrospective study including 219 BC patients, Evans  
et al. (26), reported that the incidence of brain metastasis 
from BC under 40 years old was higher than that in BC 
patients over 60 years old (43%: 8%). Research has also 
found that age and race were not significant risk factors that 
affected the survival of brain metastasis from BC (17). In the 
present study, the GEO dataset GSE14690 and the TCGA-
BRCA dataset which had large sample sizes were used, and 
an external TCGA dataset was used for further verification. 
Our results support age as an independent risk factor. The 
expression of special biomarkers is another major factor 
influencing BC brain metastasis. According to the current 
research, these markers were mainly concentrated in ER, 
PR, andHER2 (27-29).

BC is very heterogeneous, and 4 intrinsic BC subtypes 
have been proposed: luminal A/B (HR positive and HER2 
negative or positive), HER2 positive (HR negative and 
HER2 positive), and TNBC (HR negative and HER2 
negative) (30,31). TNBC confers a high risk of death after 
brain metastases regardless of patient race and age (32).  
Some studies have confirmed that HER2+ tumors have a 
higher risk of developing cerebral metastasis in metastatic 
BC, and have a significantly higher incidence of brain 
metastasis after treatment with trastuzumab (33,34). 

Figure 3 Distribution of LASSO coefficients and the MAGs were 
screened. (A) Distribution of LASSO coefficients for the selected 
genes in WGCNA. (B)The selection process of 10-fold cross-
validation penalty parameter λ. LASSO, least absolute shrinkage 
and selection operator; MAGs, metastasis-associated genes; 
WGCNA, weighted gene co-expression network analysis.
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Figure 4 The risk scores and the association between clinical characteristics and risk scores using the Kruskal-Wallis test in the TCGA-
BRCA dataset. (A) The risk score and survival time of the samples in the TCGA-BRCA (breast invasive carcinoma in The Cancer Genome 
Atlas) dataset. (B) The correlation between risk score and clinical information.
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Figure 5 Survival analysis and ROC curve was performed to evaluate the prognostic prediction effect of the identified MAGs when the test 
set, validation set, and total set were divided into high-risk groups and low-risk groups. (A) Survival analysis and ROC curve for the samples 
in the train set. (B) Survival analysis and ROC curve for the samples in the test set. (C) Survival analysis and ROC curve for the samples in 
total set. ROC, receiver operating characteristic; MAGs, metastasis-associated genes.
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Figure 6 Univariate and multivariate Cox regression was performed based on MAGs and clinical information. (A) Multivariate Cox’s 
regression analysis of TCGA-BRCA data. (B) Univariate Cox regression analysis of TCGA-BRCA data. MAGs, metastasis-associated genes; 
TCGA, The Cancer Genome Atlas.
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Figure 7 Establishment and evaluation of nomogram based on Cox regression model. (A) Nomogram of metastasis of breast cancer. (B) 
Survival analysis for the nomogram model and ROC curve for the nomogram model. (C) Calibration curve for 3-year and 5-year metastasis 
rate of breast cancer. ***, significant difference, P<0.001. ROC, receiver operating characteristic.
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Improvements in systemic therapies and new molecular 
targets for the treatment of BC with brain metastasis are 
urgently needed. In this study, HR/HER2 status (molecular 
subtypes) in the univariate analysis of clinicopathological 

factors for OS and RFS was statistically significant (P<0.05) 
(Table 2). However, compared with MAGs, the weighting 
and relative importance of subtypes were not very attractive 
in the multivariate analysis. This is consistent with the data 

Figure 8 GSEA assay was performed in order to investigate the biological characteristics of the MAGs. (A) GSEA analysis for MAGs in 
the KEGG pathway. (B) GSEA analysis for MAGs in a biological processes. (C) GSEA analysis for MAGs in cell components. (D) GSEA 
analysis for MAGs in molecular function. MAGs, metastasis-associated genes; GSEA, Gene Set Enrichment Analyses; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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obtained by the LASSO Cox regression model and the 
nomogram.

In recent years, precision medicine has always been based 
on the genetic background of patients. The development 
of next-generation sequencing (NGS) has produced 
exponentially increasing biological data. The analysis of 
this type of high-throughput data is an important way of 
finding new biomarkers and establishing robust prediction 
models (35). Since the Cox regression model requires that 
the number of follow-up cases in the multivariate analysis 
should be more than 10 times the number of covariates, the 
Cox proportional hazards model cannot be directly applied 
to the high-dimensional gene expression levels measured 
by microarray and NGS data. In addition, the expression 
levels of genes are often highly correlated, especially genes 
originating from the same co-expressed gene module in 
WGCNA. Such collinear data is not suitable for direct 
application of the Cox proportional hazards model for 
analysis. In order to solve the above problems, in 1996 
Tibshirani proposed the LASSO method. This method 
is a compressed estimation method of a linear model. It 
minimizes the sum of squared residuals under the constraint 
that the sum of the absolute value of each coefficient is 
less than a constant, so that some regression coefficients 
are compressed (36), and a sparse model is obtained which 
can effectively select variables for high-dimensional and 
collinear data (37). Tibshirani applied the basic assumptions 
of variable selection and constrained contraction in the 
LASSO method to the Cox proportional hazards regression 
model, which provided a robust model while reducing 
the estimated variance, and was more accurate than the 
stepwise selection method in screening prognostic-related 
genes. Here, we screened MAGs through WGCNA first, 
and then LASSO Cox proportional hazards regression 
models were constructed for further selection. Moreover, an 
external dataset was used for verification to ensure that the 
prediction model was accurate. We identified 2 key MAGs, 
DLG3 and GFI1, which were strongly associated with brain 
metastasis from BC, though have rarely been reported in 
the literature.

Discs large homolog 3 (DLG3) is in the membrane-
associated guanylate kinase (MAGUK) superfamily, whose 
members contain PDZ (PSD-95/DLG/ZO-1) and SH3 
domains. It plays important roles in different polarized 

Table 1 Correlation between DLG3 expression and clinicopathological 
features in primary breast cancer

Parameters DLG3 −/+ DLG3 ++/+++ χ2 P value

Age (years) 0.39 0.670

<50 15 38

≥50 17 33

Tumor size 0.18 0.981

T1 4 9

T2 21 44

T3 6 15

T4 1 3

Lymph node metastasis 11.93 0.007c

N0 15 21

N1 11 12

N2 1 16

N3 5 22

Histological grade 13.34 0.001c

G1 9 16

G2 17 16

G3 6 39

HR/HER2 statusa 4.61 0.211

HR+/
HER2−

11 19

HR+/
HER2+

8 10

HR−/
HER2+

4 21

HR−/
HER2−

9 21

AJCC stageb 0.42 0.976

I 3 7

II 19 44

III 9 18

VI 1 2
a
, HR, hormone receptor; HER2, human epidermal growth factor 

receptor 2; 
b
, AJCC stage: The American Joint Committee on 

Cancer; 
c
, statistically significant (P<0.05).

http://www.baidu.com/link?url=5sThH-x7DyhNkVI_rTXbresh8O7Xy9EixQN3GsN11viFOFVLJ1o1Rf1A6DrEGDdZ&wd=&eqid=d73050cf00020b27000000025f117090
http://www.baidu.com/link?url=5sThH-x7DyhNkVI_rTXbresh8O7Xy9EixQN3GsN11viFOFVLJ1o1Rf1A6DrEGDdZ&wd=&eqid=d73050cf00020b27000000025f117090
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Table 2 Univariate and multivariate analysis of clinicopathological factors for OS and RFS

Variables
OSa RFSa

HR (95.0% CIa) P HR (95.0% CIa) P

Univariate analysis

Age 0.809 (0.536–1.220) 0.312 0.874 (0.581–1.316) 0.520

Tumor size 1.805 (1.279–2.547) 0.001c 1.747 (1.239–2.463) 0.001c

LNa metastasis 1.175 (0.996–1.386) 0.046c 1.212 (1.024–1.435) 0.025c

Histological grade 1.960 (1.496–2.568) 0.000c 1.925 (1.478–2.506) 0.000c

HR/HER2 statusa 1.368 (1.153–1.624) 0.000c 1.276 (1.079–1.508) 0.004c

AJCC stageb 1.356 (1.002–1.836) 0.048c 1.571 (1.116–2.211) 0.010c

DLG3 2.581 (1.613–4.128) 0.000c 2.412 (1.517–3.833) 0.000c

Multivariate analysis

Tumor size 1.487 (1.033–20141) 0.033c 1.441 (1.000–2.076) 0.050

LNa metastasis 0.808 (0.625–1.045) 0.104 0.862 (0.674–1.103) 0.239

Histological grade 1.853 (1.313–2.615) 0.000c 1.726 (1.252–2.379) 0.001c

HR/HER2 statusa 1.263 (1.037–1.540) 0.021c 1.209 (0.997–1.466) 0.054

AJCC stageb 1.379 (0.922–2.063) 0.117 1.460 (0.959–2.224) 0.078

DLG3 3.234 (1.917–5.457) 0.000c 2.845 (1.711–4.732) 0.000c

a
, LN, lymph node; OS, overall survival; RFS, recurrence-free survival; HR, hazard ratio; CI, confidence interval; HR, hormone receptor; HER2, 

human epidermal growth factor receptor 2. 
b
, AJCC stage: The American Joint Committee on Cancer. 

c
, statistically significant (P<0.05).

Figure 9 Increased DLG3 expression in primary breast cancer tissues predicts poor survival durations and highly RFS rate. (A) Expression 
analysis of DLG3 protein in adjacent normal breast tissues by immunohistochemistry (magnification, 400×). (B) Expression analysis of 
DLG3 protein in primary breast cancer tissues by immunohistochemistry (magnification, 400×). (C) Analysis of the DLG3 expression in 
the primary breast cancer tissues. (D) Association of DLG3 expression with OS rate in patients with breast cancer of brain metastases. 
The patients (n=103) were stratified into 2 groups in line with DLG3 immunohistochemical staining intensity. (E) Association of DLG3 
expression with RFS rate with primary breast cancer to brain metastases patients. RFS, recurrence-free survival; OS, overall survival.
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cell types and in the establishment and maintenance of 
apical cell junctions and tight junctions of epithelial cells 
and neuronal synapses (38-40). In some studies, MIAT 
promoted the methylation of CpG islands in the DLG3 
promoter and inhibited DLG3 expression. Furthermore, 
DLG3 silencing has been shown to inhibit BC progression 
via activation of the Hippo signaling pathway (41). In 
pancreatic ductal adenocarcinoma, the downregulation 
of DLG3 resulted in Golgi complex fragmentation and 
reduced cancer-promoting chemokines (42). 

It has been reported that DLG3 was overexpressed in 
BC, and high expression of DLG3 was associated with 

decreased survival time of patients with BC (43). However, 
the role of DLG3 in brain metastases from BC is still 
unknown. Our results also revealed that high expression of 
DLG3 was significantly related to high expression of GFI1. 
This correlation suggests that there might be an interaction 
between these 2 genes, though more studies on this topic 
are still required.

Conclusions

Datasets were downloaded from the public databases GEO 
and TCGA.WGCNA was performed to construct LASSO 

Figure 10 The correlation between GFI1 and DLG3 expression. (A) Immunohistochemical analysis results of correlative expression 
with DLG3 and GFI1in breast cancer with brain metastases surgical samples (magnification, 200×). (B) The real distribution of 
immunohistochemical staining scores between DLG3 and GFI1 expression in human primary breast cancer. (C) Statistical analysis of 
immunohistochemical results of DLG3 and GFI1 expression in human primary breast cancer surgical samples. P values were analyzed by 
the Chi-square test.
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Cox proportional hazards regression models for screening 
key MAGs. A nomogram, which had better sensitivity and 
specificity for brain metastasis from BC, was constructed. 
The potential mechanisms of MAGs were detected by 
GSEA. The increased expression of the key MAGs DLG3 
and GFI1 were detected by IHC in BC samples, and 
expression was also closely related to brain metastasis  
from BC.
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Supplementary

Figure S1 External dataset from TCGA was used as a verification group to further verify the prediction effect of the MAGs. (A) Survival 
analysis for samples in the external dataset and ROC curve for samples in the external dataset. (B) The correlation between risk score and 
clinical information in the external dataset.


	8-GS-20-767（含附录）
	8-GS-20-767-supplementary

