Introduction

In spite of the ongoing debate about the oncologic safety of fat grafting (FG) most plastic surgeons tend to believe that the benefits outweigh the risks (1,2). The use of FG in breast conserving, reconstructive and aesthetic breast surgery escalates at a rapid pace. The main indications for FG are correction of shape and volume. However, despite this, there is still no consensus about the optimal FG technique (3).

The purpose of this paper is to share our experience using a simple and fast sedimentation based FG technique.

Patients and methods

This retrospective study included 176 women undergoing FG of the breast between March 2010 to July 2014 at the Departments of Plastic Surgery, Lillebaelt Hospital, Denmark and Telemark Hospital, Norway. We recorded patient demographics, indications for surgery, operative time, number of procedures, donor site, fat volume, types of complications and time to follow-up.

Surgical technique

The majority of procedures were performed in general anaesthesia using a solution of epinephrine 1:1,000,000 per liter of saline for tumescence. When performed in local anaesthesia we used Klein's solution for FG containing 0.05% to 0.1% lidocaine, epinephrine 1:1,000,000. Two similar techniques were used for fat harvest, one using syringes, the other using a liposuction device in combination with a canister. In the visualized surgery (Figure 1) we used a liposuction device connected to a disposable collection canister (Shippert Medical, USA) for collection of the fat graft.

The fat and water phase were separated by sedimentation in 60 mL syringes for approximately 5-10 minutes, simply because this seems to be the time it takes for the liquid and fat phase to separate. The ratio between fat and liquid after
sedimentation was usually 45:55. The excess liquid was then removed leaving the fat, which was then transferred to 10-20 cc syringes for grafting.

The skin was perforated using an 18-gauge cannula allowing for injection of the FG to the breast in the subcutaneous and subglandular plane. Needle dermatofascial release was performed using 18-gauge cannulas or a V-shaped dissection cannula for release of dermatofascial adhesions and scar tissue.

Results

We performed 348 FG’s of the breasts in 176 patients aged 53 (range, 22-71): 19.8% were smokers (35/176), 9% were hypertensive (16/176) and 2% had diabetes (3/176). The FG’s were performed to correct shape and volume following; delayed breast reconstruction (DBR) in 35% (123/348), immediate breast reconstruction 30% (104/348), disfiguration due to scar tissue and/or following breast conserving surgery (BCS) in 21% (73/348) (**Figure 2**). The remaining 14% (48/348) were correction for correction of breast asymmetry, tuberous and constrictive breast conditions (**Table 1**).

The FG procedure can be performed in 30 minutes by experienced surgeons in most cases. In this series 43% (75/176) had one FG and 57% (101/176) had multiple (range, 2-8). The abdomen was the preferred donor site, 83% (289/348) followed by the flanks/back 26% (90/348), thighs 19% (65/348), ipsi- and contralateral thorax 7% (23/348) and arms 3% (10/348). In the majority of cases one region was used as donor site, but in skinny patients more regions was necessary. The median volume fat harvested was 270 mL (range, 50-750 mL) and volume injected 120 mL (range, 20-375 mL). Minor complications occurred in 2% (8/348) of procedures, necrosis 0.5% (2/348), local infection 0.1% (1/348) and asymptomatic oil cysts 1.5% (5/348).

Discussion

We have performed 348 fast and easy low vacuum and sedimentation based FG procedures to the breast. The FG can be performed in 30 minutes by experienced surgeons and is simpler and less time consuming than the centrifuge based method (5-7).

We find this simple setup appropriate since no technique has proven to be better than others. One reason is that we simply lack a reliable tool to measure fat survival and

Table 1 Indication for lipofilling

<table>
<thead>
<tr>
<th>Correction following</th>
<th>Number of procedures [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBR</td>
<td>123/348 [35]</td>
</tr>
<tr>
<td>IBR</td>
<td>104/348 [30]</td>
</tr>
<tr>
<td>Scar tissue/BCS</td>
<td>73/348 [21]</td>
</tr>
<tr>
<td>Other/benign conditions</td>
<td>48/348 [14]</td>
</tr>
<tr>
<td>Total</td>
<td>348/348 [100]</td>
</tr>
</tbody>
</table>

DBR, delayed breast reconstruction; IBR, immediate breast reconstruction; BCS, breast conserving surgery.
volume increase following FG (3,8). The encountered complications were similar to other studies, namely fat necrosis, infection and oil cysts (9-11). The most frequent observed complication was oil cysts, which compares to the findings of other studies (10,12-14). Oil cysts in this study were cysts which could be palpated and then confirmed by ultrasonography. We did not routinely scan patients; however incidental findings were always easily identified as benign by ultrasonography or mammography. The overall complication rate was acceptable (2%) which compares to the complication rate of 2.8% reported by Petit et al. (14).

The oil cysts occurred in early large volume FG's which has leaded us to change our approach and reduce the injected volumes. With experience we have found that less is more, which is in line with the findings of others (6).

We have observed that FG improves skin quality in irradiated breasts. This is in concordance to several reports that has shown promising results using FG to radiated breasts thereby enabling reconstruction with implants. This could not have been possible without the use of FG (15-21).

We used FG to optimize and/or correct shape and volume following BCS, immediate and DBRs as well as tuberous and constrictive breasts, breast asymmetry and simple augmentation, which is similar to the indications published in other series (22-26) (Figure 3). We combined FG with dermatofascial release in most cases, which we use to optimize the aesthetic results as reported by others (13,27-29).

It has been questioned if FG can induce or fuel dormant cancer cells and there may be a higher risk of local events in patients with intraepithelial neoplasia following FG (30,31). However, a recent prospective study by Gale et al. showed no evidence of an increased oncologic risk in women treated with FG for breast cancer (32).

When it comes to adipose derived stem cells (ADSC), there seems to be more questions than answers regarding the oncologic safety. The adipose derived progenitor cells used for reconstruction following breast cancer have been found to stimulate local and metastatic breast cancer progression in murine models (33,34). We will have to await further studies and longer follow-up to answer the question about the oncologic safety of using ADSC-enriched solutions for grafting. However, there is no clinical evidence suggesting that there is a higher recurrence rate in patients receiving simple FG compared to controls albeit simple FG solutions also contain stem cells.

Conclusions
Simple fat harvesting using low vacuum and preparation by sedimentation is a fast and effective method to perform FG successfully for correction of shape and volume deficits of the breast following both ablative surgery as well as benign conditions with a high margin of safety.

Acknowledgements
None.

Footnote
Conflicts of Interest: The authors have no conflicts of interest to declare.

References
Simple sedimentation based fat grafting (FG) of the breast. Asvide 2015;2. [Epub ahead of print]. Available online: http://www.asvide.com/articles/679

