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Background: The aim of the present study was to develop a magnetic resonance imaging (MRI) radiomics 
model and evaluate its clinical value in predicting preoperative lymph node metastasis (LNM) in patients 
with papillary thyroid carcinoma (PTC).
Methods: Data of 129 patients with histopathologically confirmed PTC were retrospectively reviewed 
in our study (90 in training group and 39 in testing group). 395 radiomics features were extracted from 
T2 weighted imaging (T2WI), diffusion weighted imaging (DWI) and T1 weighted multiphase contrast 
enhancement imaging (T1C+) respectively. Minimum redundancy maximum relevance (mRMR) was used to 
eliminate irrelevant and redundant features and least absolute shrinkage and selection operator (LASSO), to 
additionally select an optimized features’ subset to construct the radiomics signature. Predictive performance 
was validated using receiver operating characteristic curve (ROC) analysis, while decision curve analyses 
(DCA) were conducted to evaluate the clinical worth of the four models according to different sequences. A 
radiomics nomogram was built using multivariate logistic regression model. The nomogram’s performance 
was assessed and validated in the training and validation cohorts, respectively.
Results: Seven key features were selected from T2WI, five from DWI, ten from T1C+ and seven from 
the combined images. The scores (Rad-scores) of patients with LNM were significantly higher than patients 
with non-LNM in both the training cohort and the validation cohort. The combined model performed 
better than the T2WI, DWI, and T1C+ models alone in both cohorts. In the training cohort, the area under 
the ROC (AUC) values of T2WI, DWI, T1C+ and combined features were 0.819, 0.826, 0.808, and 0.835, 
respectively; corresponding values in the validation cohort were 0.798, 0.798, 0.789, and 0.830. The clinical 
utility of the combined model was confirmed using the radiomics nomogram and DCA.
Conclusions: MRI radiomic model based on anatomical and functional MRI images could be used as 
a non-invasive biomarker to identify PTC patients at high risk of LNM, which could help to develop 
individualized treatment strategies in clinical practice. 
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Introduction

Papillary thyroid carcinoma (PTC) is the most common 
endocrine malignant neoplasm and its incidence is 
persistently increasing worldwide (1,2). The increasing 
incidence of PTC in the past few decades is partly because 
of the improved sensitivity of ultrasound (US)- and fine-
needle aspiration biopsy (FNAB)-based PTC detection 
(3,4). The majority of PTC are differentiated cancers 
with excellent prognosis and long-term survival (5). 
However, lymph node metastasis (LNM) is very common 
in differentiated thyroid cancer and has been found in 
about 30–80% of PTC patients by pathologic examination 
(6,7). In some high-risk groups, LNM is considered 
a risk factor for local recurrence, distant metastases, 
and decreased survival rates (8-10). While prophylactic 
lymph node dissection (LND) for PTC patients has been 
recommended to improve disease-specific survival (11) 
and local recurrence (12), its clinical significance remains 
controversial. According to the 2015 American Thyroid 
Association (ATA) guidelines, prophylactic LND has no 
significant benefit for improving the long-term survival (13). 
Additionally, it might increase the risk of complications, 
such as permanent hypoparathyroidism and permanent 
recurrent laryngeal nerve injury (5,14). Therefore, it is of 
importance to preoperatively evaluate cervical LNM in 
PTC patients to avoid the reoperation for recurrent tumors 
and reduce the surgical complications.

Preoperative US and US-guided FNAB are the 
ATA-recommended guidel ines  for  assessment  of 
lymph node involvement in PTC patients (13). It is 
well known that US is operator-dependent. Previous 
studies have shown that the estimated sensitivity of 
US in LNM prediction is  low (38–59%) (15-17). 
Moreover, US is also limited in assessing central lymph 
nodes and superior mediastinal lymph nodes (18).  
FNAB is an invasive approach and its sensitivity in evaluating 
LNM varies and is specific to the operator (19). Computed 
tomography (CT) is superior to US in detecting center 
LNM, but inferior to US in predicting lateral LNM (18).  
Despite having a similar sensitivity and specificity as US 
(20-22), CT is not recommended for preoperative diagnosis 
of cervical LNM in PTC patients because of iodinated 
contrast media use. 

Advances in imaging and computational fields lead to 
the rapid development of radiomics in recent years (23). 
Radiomics refers to the high-throughput extraction of 
extensive quantitative features to transform medical images 

into utilizable high-dimensional data that could likely be 
used as prognostic, diagnostic, or predictive biomarkers and 
support clinical decision-making (23-25). Accordingly, a 
series of studies have investigated the preoperative predictive 
value of radiomics for LNM in various types of cancer (26-29). 
Furthermore, preoperative US- and CT thyroid imaging-
based radiomics have also been reported in recent studies to 
predict cervical LNM in PTC patients (30,31).

As a non-invasive and non-radiative imaging approach, 
magnetic resonance imaging (MRI) provides not only 
anatomical information with high soft tissue contrast, but also 
functional information such as diffusion weighted imaging 
(DWI). This technique produces qualitative and quantitative 
information about that changes in cell levels and is widely 
used in tumor detection, differentiation, treatment response 
monitoring and prognosis evaluation. DWI has been shown 
to offer significant diagnostic value in thyroid nodules (32).  
Some studies have shown that MR based radiomics can 
improve the prediction of LNM and cancer staging  
(26,33-35). However, to our best knowledge, the clinical 
value of MRI-based radiomics for preoperative LNM 
prediction in PTC patients has not yet been studied in detail.

Therefore, we aimed to develop a radiomics model based 
on T2-weighted imaging (T2WI), DWI, and T1-weighted 
multiphase contrast-enhanced images (T1C+) to evaluate its 
performance in the prediction of cervical LNM in patients 
with thyroid carcinoma. We present the following article in 
accordance with the STROBE reporting checklist (available 
at http://dx.doi.org/10.21037/gs-20-479).

Methods

Patients

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This retrospective study was 
approved by the institutional ethics committee of Minhang 
Hospital affiliated to Fudan University School of Medicine 
(2015_51). Individual consent for this retrospective analysis 
was waived. From January 2016 to February 2018, 203 
patients with suspected PTC were consecutively reviewed. 
The inclusion criteria were as follows: (I) pathologically 
confirmed PTC; (II) with central lymph node dissection 
(CLND) and/or lateral compartmental LND procedure; 
(III) with preoperative MRI examination; (IV) no prior 
thyroid surgery, biopsy, head and neck cancer, and history of 
neck radiation therapy before MRI. The exclusion criteria 
were as follows: (I) no LND; (II) small tumor volume 
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(maximum diameter <5 mm); (III) poor MR image quality; 
(IV) pathology-MRI mismatch; and (V) inconsistency of 
MR scanning parameters. Finally, 129 patients (37 male and  
92 females; age: 45.01±13.75 years) were included; of these, 
63 patients had pathologically confirmed central LNM 
(Figure 1). Based on the experience of Logistic regression 
analysis in constructing the radiomics model, the sample size 
can meet the experimental requirements.

MRI acquisition

All patients underwent MRI scanning in the 1–2 weeks 
before surgery. Images were obtained on a 1.5T whole body 
scanner (EXCITE HD, GE Healthcare, Milwaukee, WI) 
equipped with an 8-channel special neck surface coil. The 
scan sequences included axial T1WI, axial T2WI, axial 
DWI with b values of 0 and 800 s/mm2, and axial T1C+. 
For contrast-enhanced scanning, intravenous gadolinium 
(Magnevist, Bayer HealthCare Pharmaceuticals, Montville, 
NJ) at a flow rate of 3 mL/s was administered using an 
automated injector. Multiphase contrast-enhanced images 
were acquired at 30, 60, 120, 180, 240, 300 seconds 
after contrast-medium injection. All patients underwent 
respiratory training before the MRI and were asked to hold 
their breath at the same level in all acquisition phases. 

Tumor segmentation 

All MR images were exported for tumor segmentation. The 
tumor region was first determined based on preoperative 
T2WI, DWI, and T1C+ images by two radiologists 
(B Song, W Hu, with 10 and 6 years of experience, 
respectively, in thyroid MRI) in consensus. The entire 
volumes of interest (VOIs) of the primary tumor on 
both T2WI/DWI and T1C+ images were then manually 
segmented along the tumor boundaries layer by layer by 
radiologist W HU with the ITK-SNAP software package 
version 3.4.0 (www.itksnap.org). For multifocal PTC, we 
depicted the largest lesion for further analysis. 

Interobserver and intra-observer reproducibility

The intra-observer ICCs and inter-observer ICCs were 
calculated to estimate the reproducibility of radiomics 
features. Thirty cases were randomly selected and double-
blinded for comparing manual segmentation by two 
radiologists (B Song, W Hu). To evaluate the intra-
observer reproducibility, W HU used ITKSNAP (http://
www.itksnap.org) software manually sketched the ROI, 
2 weeks later, W Hu performed the second ROI manual 
segmentation. Moreover, B Song performed the ROI 

Metastasis (n=63) No metastasis (n=66)

Tumor segmentation and MRI 
radiomics feature extraction

Excluded n=74
•No preoperative MRI (n=34)
•Poor imaging quality by artifacts (n=13)
•Pathology-MRI mismatch (n=7)
•Tumor maximum diameter less than 5mm (n=11)
•Inconsistency of MRI scanning parameters (n=4)
•No lymph node dissection (n=5)

Features selection

Training cohort (n=90) and validation 
cohort (n=39)

Prediction models building 
and assessment

PTC confirmed by pathology 
(n=203)

Final patients enrolled 
(n=129)

Figure 1 Flow chart of the patient selection process. PTC, papillary thyroid carcinoma; MRI, magnetic resonance imaging.

http://www.itksnap.org
http://www.itksnap.org
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segmentation independently to evaluate the intra-observe 
correlation. An ICC value of >0.75 was considered to 
indicate good agreement. The features with ICCs greater 
than 0.75 of first sketch of W Hu were retained.

Feature extraction and selection 

The Artificial Intelligence Kit version 3.0.0 (GE Healthcare) 
was used for features extraction from T2WI, DWI, and 
T1C+ images. These radiomics features were divided into 
the following six groups: (I) gray-level histogram features; 
(II) shape features; (III) texture features; (IV) gray-level 
cooccurrence matrix (GLCM) features; (V) gray-level run 
length matrix (GLRLM) features; and (VI) gray-level size 
zone matrix (GLSZM) features.

All patients were randomly assigned to training and 
validation groups (ratio, 7:3). To establish radiomics 
prediction models in the training cohort, we used two feature 
selection methods to select the most informative radiomics 
features and avoid overfitting: minimum redundancy 
maximum relevance (mRMR) and least absolute shrinkage 
and selection operator (LASSO) algorithm. mRMR was 
first performed to eliminate all redundant and irrelevant 
features; finally, 30 features were retained. Then, LASSO 
was performed to further select the optimized subset of 
features through regularization to construct the final model 
in the training group. The LASSO includes choosing the 
regular parameter λ, coefficients of partial candidate feature 
were compressed to zero, non-zero coefficients features 
were finally retained.

Model construction

In order to better evaluate the performance of radiomics 
features in LNM prediction, four prediction models were 
constructed based on features extracted from images of 
T2WI, DWI, T1C+, and the combination of T2WI, DWI, 
and T1C+ (combined). Radiomics scores (Rad-scores) 
corresponding to the four models was calculated for each 
patient by adding the selected features weighted by their 
coefficients in the LASSO logistic regression model in 
the training cohort. The Rad-score calculation formula is 
presented in the Supplementary files. 

Model validation

Receiver operating characteristic (ROC) curve analysis was 
used to assess the performance of the prediction model 

based on the following indices: the area under the curve 
(AUC), sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and accuracy. The 
prediction performance of the model was further tested in 
the validation cohort. Finally, the decision curve was used to 
evaluate the model’s clinical value.

Construction and assessment of radiomics nomogram 
model

The Rad-scores corresponding to combined model and 
the clinical variables were used to construct the radiomics 
nomogram model. Firstly, filter the clinical variables using 
the univariate logistic regression method to select the 
statistically significant feature. Next, the remaining features 
were entered into the multivariate logistic regression 
model to construct the clinical model and nomogram. The 
ROC analysis was calculated to quantify the discriminative 
performance of the nomogram.

Statistical analysis

Continuous variables were presented as mean ± standard 
deviation (SD). To compare the characteristics of patients, 
independent two-sample t-test and chi-square test, 
respectively, were performed on continuous and categorical 
variables using SPSS 23.0 (IBM, Armonk, NY, USA). For 
all tests, P<0.05 was considered statistically significant. 
Other statistical analyses were performed using R statistical 
software version 3.5.1. The ‘mRMRe’ package was applied 
to the mRMR to first screen the radiomic features. The 
“Glmnet” package was applied to analyze the LASSO 
logistic regression model. ROC curves were plotted by 
using “pROC” package. Decision curve analyses (DCA) 
was conducted using “dca.R”. Nomogram construction was 
performed using the “rms” package. A two-sided P value of 
<0.05 was considered significant.

Results

Patient characteristics

In all, 129 patients with PTC (63 nodes positive and 69 
nodes negative) were included in our study. The detailed 
patient characteristics are presented in Table 1. No 
significant intergroup differences were found with respect 
to age and sex. The tumor diameter of LNM group was 
larger than that of non-LNM group. Bilateral PTCs and 
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Table 1 Clinical characteristics of PTCs

Characteristic
PTCs with LNM

P
No (n=66) Yes (n=63)

Age, years 47.85±13.36 41.82±13.41 0.835

Diameter, cm 1.01±0.41 1.51±0.69 <0.001*

Sex, n (%) 0.717

Female 48 (72.7) 44 (69.8)

Male 18 (27.3) 19 (30.2)

Location, n (%) 0.039*

Right lobe 36 (54.5) 26 (41.3)

Left lobe 29 (43.9) 28 (44.4)

Isthmus 0 (0.0) 2 (3.2)

Bilateral 1 (1.5) 7 (11.1)

Multifocality, n (%) 0.006*

No 62 (93.9) 48 (76.2)

Yes 4 (6.1) 15 (23.8)

Short diameter of LN, mm 3.92±1.93 5.02±2.06 0.002*

Long diameter of LN, mm 5.04±2.63 6.91±3.45 0.005*

Long/short diameter ratio of LN 1.29±0.46 1.37±0.30 0.258

Number of LN excised 3.53±2.90 8.73±8.16 <0.001*

Number of LN metastasized 0 3.54±3.19 <0.001*

Histological subtype, n (%) <0.001*

Classic PTC 57 (86.36) 55 (87.30)

Follicular PTC 8 (12.12) 2 (3.17)

Special subtype of PTC 1 (1.52) 6 (9.52)

ETE, n (%) <0.001*

No 58 (87.88) 35 (55.56)

Yes 8 (12.12) 28 (44.44)

TNM stage, n (%)

I 58 (87.88) 35 (55.56) 0.008*

II 8 (12.12) 28 (44.44)

*, P<0.05 was considered statistically significant. PTC, papillary thyroid carcinoma; LN, lymph nodes; TNM, tumor node metastasis; ETE, 
extrathyroidal extension. 

multifocal PTCs were more common in the LNM group. 
There were significant differences in both the size of 
lymph nodes and the number of lymph nodes between the 
LNM group and the non-LNM group. But the ratio of 
long diameter to short diameter of lymph nodes had no 

significant difference. According to postoperative pathology, 
extrathyroidal extension, special subtypes and TNM stage 
II were more common in LNM group. There were 6 cases 
of special subtypes (tall-cell 1, hobnail/micropapillary 3 and 
solid variants 1) in LNM group and1 special subtypes in 
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non-LNM group (hobnail/micropapillary).

Features selection and radiomics signature construction 

A total of 395 features were extracted from T2WI, DWI 
and T1C+ images. After the inter- and intra-observer 
agreement assessment, we reserved 357 features from 
T2WI images, 330 features from DWI images, and 373 
features from T1C+ images for subsequent analysis (https://
cdn.amegroups.cn/static/application/7ff4ec46d3721730c28
00ca134c913ad/gs-20-479-01.pdf).

After the mRMR and LASSO process, we finally selected 
seven features from T2WI images, five features from 
DWI images, ten features from T1C+ images and seven 
features from combined images. Among the seven features 
of combined images, four, two and one features were 
respectively from DWI, T2WI and T1C+ images, while 
the one feature from T1C+ images took the largest weight. 
The relative feature importance of all extracted features 
calculated by LASSO is shown in Figure 2. The odds ratio 
and 95% confidence interval of the feature are detailed in 
the Table S1.

Radiomics signature validation

A significant correlation between Rad-scores from four 
models and LNM was found in the training group. Rad-
scores in the LNM group were higher than those of the 
non-LNM group (Figure 3). The validation group showed 
similar results, indicating that these models can help to 
stratify node-positive and node-negative PTC. 

Model validation

The ROC analysis was used to evaluate performance of 
all four prediction models. In the training cohort, the 
respective values of AUC, accuracy, specificity, sensitivity, 
PPV, and NPV were 0.819, 0.750, 0.872, 0.622, 0.707, and 
0.824 in the T2WI model; 0.826, 0.783, 0.702, 0.867, 0.846, 
and 0.736 in the DWI model; 0.808, 0.761, 0.830, 0.689, 
0.736, and 0.795 in the T1C+ model; and 0.835, 0.804, 
0.723, 0.889, 0.872, and 0.755 in the combined model. The 
respective predictive performance of the validation cohort 
was comparable. The AUC, accuracy, specificity, sensitivity, 
PPV, and NPV were respectively 0.798, 0.784, 0.789, 0.778, 
0.789 and 0.778 in T2WI model;0.798, 0.784, 0.789, 0.778, 
0.789 and 0.778 in DWI model; 0.789, 0.784, 0.737, 0.833, 
0.824 and 0.750 in T1C+ model, and 0.830, 0.811, 0.842, 

0.778, 0.800 and 0.824 in combined model. The AUCs 
were slightly higher in combined model than that of models 
with features from single image type. The ROC curve in 
distinguishing PTC with and without LNM is shown in 
Figure 4. DCA showed that the combined prediction model 
was more advantageous (Figure 5).

Performance of the radiomics nomogram 

Multivariate logistic regression identified Rad-score as 
an independent predictor of LNM in PTC patients. Our 
nomogram performed well in both cohort [AUC values: 0.835 
(95% CI, 0.751–0.918) in the training cohort and 0.830 (95% 
CI, 0.691–0.970) in the validation cohort] (Figure 6). 

Discussion

Cervical LNM conferred independent risk and affects 
survival outcomes in patients with PTC (10). In this study, we 
investigated the value of MRI-based radiomics in predicting 
LNM in PTC patients. Our results revealed that all three 
models based on features extracted from T2WI, DWI and 
T1C+ images had good performance in predicting LNM 
for PTC patients. The model constructed using combined 
features from three image types achieved better predictive 
performance for LNM in PTC patients, as shown by higher 
AUC (0.830), sensitivity (0.842), specificity (0.778), PPV 
(0.800), and NPV (0.824) in the validation cohort. The 
application of radiomics based on anatomical and diffusion 
MRI provides a new method for preoperative differential 
diagnosis of LNM. This approach could be helpful for 
preoperative risk stratification of PTC patients and optimal 
selection of surgical options, while avoiding unnecessary 
prophylactic lymphadenectomy in low-risk patients.

Cervical LNM is an significant prognosis factor in  
PTC (9). The identification and resection of cervical 
LNM is of great importance for reducing the risk of local 
recurrence (15). US and FNAB are considered as the 
preferred methods for assessing LNM. Recent studies have 
reported a few non-invasive and independent predictors of 
LNM in PTC, such as tumor capsular invasion, distance 
from capsule, and extrathyroidal extension (ETE) (36-38). 
In our previous study, we also confirmed that poorly defined 
tumor margins combined with thyroid contour protrusion 
sign on MRI could help to identify high-risk patients 
with LNM (39). However, considering that these image 
predictors are subjective and qualitative parameters and the 
low and varied sensitivity of them, the clinical significance 

https://cdn.amegroups.cn/static/application/7ff4ec46d3721730c2800ca134c913ad/gs-20-479-01.pdf
https://cdn.amegroups.cn/static/application/7ff4ec46d3721730c2800ca134c913ad/gs-20-479-01.pdf
https://cdn.amegroups.cn/static/application/7ff4ec46d3721730c2800ca134c913ad/gs-20-479-01.pdf
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was somewhat limited. 
We investigated the value of radiomics based on MRI in 

predicting LNM in PTC patients in this study. Completely 
randomized grouping design and the consistency analysis 
between Interobserver and intra-observer were done to 
reduce the bias. We chose mRMR and LASSO to select 
features, due to their high usage rate and effectiveness 
according to previous studies (36,40-43). The defining 
principle of mRMR is to maximize the correlation between 
features and classification variables, while minimizing the 
correlation among features, which help to select features 
with less redundancies (44,45). Therefore, we carried out 
mRMR in the first stage to eliminate all redundant and 
irrelevant features. In the subsequent stage, we conducted 
LASSO to choose the optimized subset of features to 
construct the final model. The most outstanding advantage 
of LASSO regression is that the relatively unimportant 
variable coefficients were excluded by penalized regression. 
All independent variables can be processed at the same time, 
which greatly improves the stability of modeling. Radiomics 
is a novel and non-invasive method, which extract high-
throughput features from medical images to establish 
appropriate model according to the heterogeneity of tumor 
improve diagnostic, prognostic, and predictive accuracy (46). 
To our best knowledge, few radiomics studies have focused 

Figure 4 ROC curves for T2WI, DWI, T1C+ and combined 
model in distinguishing PTC with and without LNM in the (A) 
training and (B) validation cohorts. T2WI, T2 weighted imaging; 
DWI, diffusion weighted imaging; T1C+, T1 weighted multiphase 
contrast enhancement imaging; LNM, lymph node metastasis; 
ROC, receiver operating characteristic; PTC, papillary thyroid 
carcinoma.
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Figure 6 The radiomics nomogram by multivariable logistics regression analysis (A). The ROC analysis of the clinical model and 
the radiomic nomogram in the training cohort and validation cohort (B). The prediction performance of the radiomic nomogram for 
preoperative LNM of PTC was better than that of the clinical model in both the training and validation cohort. LNM, lymph node 
metastasis; ROC, receiver operating characteristic; PTC, papillary thyroid carcinoma.

on LNM prediction in PTC. Lu et al. (30). indicated that 
radiomics signatures extracted from CT images showed 
significant association with LNM with an AUC of 0.706 in 
the validation cohort. Liu et al. (31). showed that radiomics 
based on preoperative US images has the potential to 
predict LNM with an AUC and accuracy of 0.727 and 0.710, 
respectively, in the validation cohort. Here, we studied 
the value of radiomics on the basis of different MRI image 
types in the prediction of cervical LNM in PTC. Our 
results show that all radiomics models based on features 

from T2WI, DWI and T1C+ images had good prediction 
performance, which were better than that reported by the 
two previous studies. Furthermore, it was encouraging to 
find that the model using combined features from three 
image types had a better prediction performance (AUC, 
0.835 vs. 0.830), and a good balance between sensitivity and 
specificity in both study cohorts (sensitivity, 0.723 vs. 0.842; 
specificity, 0.889 vs. 0.778). In this study, we incorporated 
diffusion MRI in addition to conventional morphological 
images to predict LNM in PTC patients. A previous study 
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confirmed that whole ADC tumor volume is a valuable 
index for tumor biology in thyroid carcinoma (47). Our 
previous study showed that ADC is a reliable predictor 
for the separation of high invasive PTC lesions form low 
invasive lesions (48). 

Hu et al. reported that the stability of quantitative features 
may be affected by segmentation results, machine models, 
and machine settings. Nevertheless, some features such 
as morphological features, intensity features, and GLCM 
features remained stable (49). In the combined images of 
our study, we extracted seven features including one texture 
feature from T1C+, two morphological features from T2WI 
and four features (two GLCM features, one intensity features 
and one texture features) from DWI. This result may indicate 
that our model is stable and cannot be easily influenced. 

According to univariate analysis, although tumor size and 
short lymph nodes’ diameter were significantly associated 
with LNM, they were not independent risk factors in the 
multivariate analysis. Rad-score was the most valuable 
predictor and retained in the radiomic nomogram.

The limitations of our study should be acknowledged. 
First, this study is a single-center study with a small sample 
size. Future multi-center studies with a large cohort 
population are needed to further validate the results. 
Second, for multifocal PTC, we only selected the largest 
tumor, while we cannot ensure that the pathogenic lesion 
is the largest one. Thirdly, lesions less than 5 mm were 
excluded in this study due to the indistinct boundary. Future 
advances in MRI acquisition may improve the detection of 
these small lesions. Finally, features were extracted from 
primary tumors without considering information of lymph 
nodes. A synthetic radiomics analysis of both primary tumor 
and lymph node may improve the prediction performance.

Conclusions

In conclusion, we established a noninvasive radiomics 
prediction model based on multimodality MRI. Overall, 
good accuracy was obtained in the preoperative prediction 
of the LNM status in PTC patients. This approach may be 
a convenient tool for clinicians to estimate individual risk of 
LNM and guide personalized treatment in PTC.
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T1_RunLengthNonuniformity_AllDirection_offset1_SD 31887196 1.20E-05 8.47E+19 0.236527

T1_Inertia_angle0_offset1 0.46882 0.283087 0.776412 0.003248

T1_Clustershade_AllDirection_offset7 3.327627 1.434688 7.718125 0.005097

T1_LowGreyLevelRunEmphasis_AllDirection_offset4_SD 0.017801 1.05E-04 3.020419 0.124059

T1_Inertia_AllDirection_offset7_SD 0.19205 0.04175 0.883428 0.034078

T1_Correlation_angle45_offset7 1.981494 1.101885 3.563276 0.022371

T1_Correlation_angle135_offset7 1.453282 0.924527 2.284442 0.105251

T1_GLCMEntropy_AllDirection_offset7_SD 5.49E-14 3.79E-50 7.94E+22 0.472298

T1_Correlation_angle0_offset7 2.293938 1.213839 4.335128 0.010567

T1_ClusterProminence_angle135_offset7 1.140744 0.747008 1.742012 0.542112

T2WI model

T2_Compactness2 2.228061 1.285117 3.862884 0.004325

T2_Range 2.22889 1.325111 3.749083 0.00252

T2_GLCMEntropy_AllDirection_offset7_SD 0.397476 0.123443 1.279835 0.122004

T2_InverseDifferenceMoment_angle135_offset1 2.808027 1.44644 5.451327 0.002285

T2_Inertia_AllDirection_offset7_SD 0.076447 0.004193 1.39381 0.082599

T2_kurtosis 1.760236 1.064204 2.911499 0.027642

T2_Correlation_angle0_offset4 1.553793 0.994733 2.427056 0.052775


	8-GS-20-479
	8-GS-20-479-附录

