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Introduction

Medullary thyroid carcinoma (MTC) arises from the 
parafollicular cells (C cells), and accounts for less than 5% 
of thyroid malignancies (1,2). As a neuroendocrine tumor, 
MTC secretes calcitonin, which leads to the elevation of 
serum calcitonin. Therefore, serum calcitonin becomes 
a vital marker to monitor the occurrence or recurrence 

of MTC (3). Histologically, the frequent amyloid 
deposits and occasional psammoma bodies in the stroma 
differentiate MTC from other extrathyroid-originated 
neuroendocrine tumors. Unlike other neuroendocrine 
tumors, about a quarter of MTC appears as a predominant 
part of hereditary multiple endocrine neoplasia type 
2 (MEN2) syndromes. With the involvement of other 
synchronous and metachronous lesions (including 
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pheochromocytoma, hyperparathyroidism, and mucosal 
neuroma), MEN2 is divided into three subtypes: MEN2A, 
MEN2B, and familial MTC (4). Most patients with 
MEN2A have germline mutations in the Rearranged 
during Transfection (RET) C634, whereas patients with 
MEN2B and FMTC have germline mutations in RET 
M918T (5,6). Somatic RET mutation is identified in a 
considerable proportion of sporadic MTCs, and RET 
M918T is the most frequent genetic change (7-19). RAS 
point mutations are usually mutually exclusive with RET 
mutations, and occur in 0–81% of RET-negative MTCs 
(12,15,17,20-25). Several independent studies have shown 
that RET and RAS mutations have prognostic significance 
(7,11,17,25-29). Hence, the prevalence of RET and RAS 
mutations in different populations might partly explain 
the difference in prognosis among different populations 
with sporadic MTC. Many genetic changes are found 
in the RET and RAS-negative cases, although their 
molecular mechanism and clinic significance are yet to be 
determined.

Immune checkpoint inhibitors targeting PD-L1/
PD-1 are regarded as one of the most significant medical 
breakthroughs in the 21st century (30-32). Previous studies 
have revealed poor tumor-infiltrating lymphocytes, 
low expression of PD-L1 and low mutational burden 
in MTCs (24,33,34), which disfavor the application 
of immunotherapy. However, several reports from 
China have proved that PD-L1 expression is related 
to advanced disease. The positive correlation between 
PD-L1 expression and advanced disease may bring 
the dawn of immunotherapy in advanced MTC, and 
relevant clinical trials are expected (35,36). The American 
FDA has approved two multikinase inhibitor (MKI) 
drugs, vandetanib and cabozantinib, in the treatment of 
advanced MTC. A more specific RET-targeting tyrosine 
kinase inhibitor (TKI) is currently underdeveloped. The 
combination of TKI therapy and immunotherapy might 
represent a novel therapeutic option in the treatment of 
advanced MTC (1).

This article focuses on the advances in genetic alterations 
and their prognostic impact in sporadic MTC among 
different populations and discusses the potential role of 
immunotherapy targeting PD-L1/PD-1. Furthermore, the 
current multikinase inhibitor target therapy for sporadic 
MTC is summarized. Updates in advance of the role of 
calcitonin/procalcitonin/calcitonin-related polypeptide 
alpha (CALCA) gene transcripts in diagnosing and handling 
MTC are also mentioned.

RET mutations 

The RET  gene was firstly described in 1985, as a 
transforming gene encoding a receptor tyrosine kinase 
(37,38). RET is localized on 10q11.2, and consists of 
21 exons (38,39). RET is a single-pass transmembrane 
protein, which contains the following functional domains: 
an extracellular domain with four repeated cadherin-like 
regions, a cysteine-rich region, a transmembrane domain, a 
broad intracellular tyrosine kinase domain, and a carboxy-
terminal domain (allowing for three isoforms, RET 9, 
43, and 51) (Figure 1) (40-42). The intracellular domain 
encompasses two tyrosine kinase subdomains (TKS1 
and TKS2) that are involved in the activation of many 
intracellular signal transduction pathways (40-42). 

As a receptor tyrosine kinase, RET plays a crucial role 
in cell signal transduction, and the germline mutation 
of RET leads to the destruction of cell proliferation and 
differentiation in tissues derived from neural crest cells, 
including parafollicular thyroid cells, parathyroid gland, 
adrenal medulla, and intestinal autonomic nerve plexus 
(5,40,43). The molecular mechanism of somatic RET 
mutation is supposed to be like germline mutation (44). 
RET protein performs its pivotal role in regulating cellular 
transformation, survival, differentiation, proliferation, 
and migration. The transformation is done through 
the binding of its ligand GFRa complex, triggering 
its homodimerization, phosphorylation of tyrosine 
residues, and initiation of several intracellular signaling 
cascades, including MAPK and PI3K pathways (Figure 1) 
(2,41,42,45,46). 

Sporadic MTCs have various somatic gene point 
mutations and deletions. The prevalence of somatic RET 
mutations in sporadic MTCs varies from 19.4–88.9% 
among different populations (4,7-19,27). The lowest 
mutation rate of somatic RET is from a Chinese population, 
while the highest from the US population. There is a 
general agreement that RET T918M, a point mutation in 
the methionine residue in exon 16 corresponding to the 
intracellular tyrosine kinase receptor domain, is the most 
frequent somatic RET mutation, the germline mutation of 
which was originally known as the activating mutation in 
MEN 2B. Other mutations in the RET gene in sporadic 
MTC have been recognized at codons 609, 611, 618, 620, 
630, 631, 632, 634, 636, 639, 641, 748, 766, 768, 876, 883, 
884, 901, 908, 919, 922, and 930 at exons 10, 11, 13, 14, 15 
and 16 (4,8,15,40,47-50). 

There are many pieces of evidence that patients with 
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Figure 1 The structural scheme of RET protein and the principle activates downstream signal pathways. CID, cadherin-like domain; CRD, 
cysteine-rich domain; TMD, transmembrane domain; JMD, juxta-membrane domain; TKS, tyrosine kinase subdomain; CTD, carboxy-
terminal domain.
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sporadic MTC harboring RET mutations have a poorer 
prognosis than those harboring non-RET mutations 
(7,11,17,25-28,51). A statistically significant correlation 
was reached between RET mutations and the advanced 
tumor stage, higher T category, and lymph nodes or distant 
metastases and a worse patient outcome (17). In a recent 
meta-analysis involving 23 studies with 964 patients with 
MTC, RET mutation was determined to be associated 
with an elevated risk for lymph node metastasis, distant 
metastasis, advanced tumor stage, tumor recurrence, 
and patient mortality (28). Furthermore, tumors with 
somatic codon 918 mutations appear more aggressive than 
tumors with other RET mutations (17). Interestingly, RET 
mutations in sporadic MTCs may not necessarily lead to 
tumorigenesis but are essential for disease progression. 
This behavior is supported by the fact that the incidence 
of RET mutations in sporadic small MTC (smaller than  
1 cm: microMTC) is lower than in larger tumors, and that 
RET mutations often exhibit mutational heterogeneity even 
in the advanced disease when present (38,52). Romei et al. 
hypothesized that either other oncogenes are responsible 
for most microMTCs, thereby identifying a tumor 
subpopulation or that RET mutation might or might not 
occur later during tumor progression (52).

Other somatic changes of RET ,  including copy 
number alteration and retrocopy, codon deletions, 

and rearrangements, were likely to be involved in the 
pathogenesis and progression of MTCs (17,47,53-55). Bim 
et al. identified copy number alteration and retrocopy in the 
RET gene; determined a recurrent novel point mutation 
(G548V) exclusively in the somatic retrocopy of RET in both 
sporadic and hereditary MTCs and MTC cell lines, and 
identified retrocopies produced in somatic cells might play 
a role in the pathogenesis and progression of MTCs (53).  
A rare RET fusion, MYH13 exon 35 with RET exon 12, was 
reported in a patient who died of aggressive sporadic MTC 
with the survival of fewer than ten months after diagnosis, 
which might be a novel driver genetic change, and a RET 
fusion also provides a possible target for the treatment of 
RET TKI (54).

RAS mutations

The RAS (P21) protein is located on the inside of the cell 
membrane and plays a vital role in the transduction of cell 
growth and differentiation signals (56). It belongs to the 
guanosine triphosphate (GTP) binding protein (a coupling 
factor of cell information transmission), which regulates 
information transduction through the transformation 
between GTP and guanosine diphosphate (GDP) (56,57). 
There are three members of the RAS gene family: HRAS, 
KRAS, and NRAS (58). The various RAS genes are found 
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on different chromosomes but have similar structures, all 
composed of four exons. RAS takes part in both MAPK and 
PI3K signal pathways. RAS point mutations in MTC occur 
in HRAS and KRAS within hot spots in exons 2, 3, and 4, and 
rarely involve NRAS. They are usually mutually exclusive 
with RET mutations and are present in approximately 0–81% 
of RET wild-type sporadic MTCs (15,17,20-25), suggesting 
that RET and RAS somatic mutations are likely mutually 
exclusive in MTC tumorigenesis and development. Patients 
harboring RAS mutations (RET negative) showed a better 
prognosis than those harboring RET mutations or presenting 
no mutations (17,29).

However, the outcome of patients with a somatic RET 
mutation was significantly worse than both RAS positive/
RET negative and RAS negative/RET negative cases (13,17). 
RAS mutations were reported to be significantly associated 
with higher intensity of p-S6 expression, suggesting that 
the mTOR pathway was activated in such MTCs (25). 
These findings suggest RAS mutations could play a role in 
tumor development, which leads to a less aggressive tumor 
phenotype, whereas RET mutations could be responsible 
for a more aggressive phenotype associated with a worse 
prognosis (22,27).

Other genetic alterations

Other somatic mutations were found in a subset of patients 
with MTC, especially patients without RET and RAS 
mutations. Ciampi et al. identified somatic mutations in 
the genes of MET, TP53, TSH receptor, EIF1AX, CHK2, 
PPM1D (29). In a study of MTC in Taiwan’s population, 
they identified ten novels MTC somatic mutations: 
BICD2 ,  DLG1 ,  FSD2 ,  IL17RD ,  KLHL25 ,  PAPPA2 , 
PRDM2, PSEN1, SCRN1, and TTC1, using whole-exome 
sequencing (33). They further analyzed 1,152 MTCs 
from COSMIC data and found that most of the variants 
were involved in pathways of PI3k-Akt, ErbB, MAPK, 
mTOR, and VEGF signaling pathways, and some were 
included in the pathogenesis of thyroid cancer, central 
carbon metabolism, and microRNAs in cancer (33). FAT1 
and FAT4, two members of the FAT gene family, both 
located at chromosome 4q, were identified as the two most 
commonly mutated genes in addition to RET in a small 
cohort of 18 cases of sporadic MTCs from China by Qu  
et al. They further showed that FAT1 and FAT4 knockdowns 
could promote MTC cell proliferation, using TT and 
MZ-CRC-1 cell lines (15). It is a novel finding that, on 
the gene expression profile, MTCs could be clustered into 

two molecular subtypes: the mesenchymal-like subtype, 
characterized by the epithelial-mesenchymal transition, and 
the proliferative-like subtype, associated with enrichment 
of cell cycle pathways. Most events of structural recurrence 
occur in the latter (15).

Copy-number losses in chromosome 4q and 1p cause 
frequent somatic changes for patients with sporadic 
MTC (15). A study in MD Anderson Cancer Center 
reported that 19% of patients with sporadic MTC had an 
aberrant loss of the cyclin-dependent-kinase inhibitors 
2C (CDKN2C), found in the 1p32 chromosomal region. 
The aberrant CDKN2C loss was associated with distant 
metastasis at presentation and an unfavorable overall 
survival (OS). These findings were explained by showing 
that aberrant loss of CDKNs could lead to unrestrained 
phosphorylation of retinoblastoma protein and unregulated 
progression through the S phase of the cell cycle, thus 
resulting in the development of cancers. They also 
demonstrated the clinical impact of aberrant CDKN2C loss 
was enhanced by concomitant RET M918 mutation (59).  
Anaplastic lymphoma kinase (ALK)  translocation, 
a frequent genetic alteration in anaplastic large cell 
lymphoma and lung adenocarcinoma, was identified in two 
cases by Ji et al. from screening 98 cases of MTC, with 
the partner genes of EML4 and GFPT1, respectively (60).  
This finding may show that a rare subset of patients with 
MTC with ALK fusion might receive help from ALK 
target therapy. No NTRK translocation has been reported 
in MTC, although NTRK mutation has been reported in 
MTC (61). 

Tumor microenvironment and immunotherapy

In the past decade, people have achieved gratifying results 
through using immunotherapy in treating many solid 
cancers, which was an essential milestone in the history 
of medical development (62). The successful findings in 
tumor immunotherapy are due to the discovery of immune 
checkpoint molecules, which are especially important in 
the regulation of tumor microenvironments. The tumor 
microenvironment is the internal environment in which 
tumor cells are produced and live. It consists of not only 
tumor cells but also fibroblasts, immune and inflammatory 
cells, and other cells in close contact with tumor cells, as 
well as adjacent cell stroma, microvessels, and infiltrated 
biological molecules (42,63-65). Malignant cells actively 
take part in the reconstruction of a pre-existing matrix, 
creating a new microenvironment that can be characterized 
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by inflammation or desmoplastic characteristics. Tumor 
microenvironment and cancer cells interact and influence 
each other. They are thereby promoting tumor progression 
and metastasis (42,63-65). It has been proposed to classify 
tumor microenvironments into four groups on their status 
of PD-L1 and tumor-infiltrating lymphocytes to streamline 
immunotherapy (31). 

MTCs often manifest as few tumor-infiltrating immune 
cells with low expression of PD-L1 both in the tumor and 
in the stroma cells (34,35), and a low mutational rate (24). 
However, there is also evidence showing a positive immune 
reactivity of MTC. In a large cohort of 201 consecutive 
Chinese patients with MTC, Shi et al. demonstrated PD-L1 
positivity was associated with aggressive clinicopathologic 
features (a larger tumor size, lymph node metastases, and 
advanced TNM staging) and is independently predictive of 
structural recurrence, and biochemical recurrence/persistent 
disease (36). Furthermore, they revealed a higher rate of 
PD-L1 expression in patients with incurable recurrence (36). 
Bi et al. have reported similar findings (35). They detected 
the expression of PD-L1 and PD-1 in 87 cases of MTC 
and found PD-L1 positivity was significantly correlated 
with distant metastases at the surgery. That co-expression 
of PD-1 and PD-L1 in MTC was correlated with advanced 
pathologic TNM stage III/IV and distant metastases at 
the surgery. The positive correlation between PD-1/PD-
L1 and prognosis suggests that immunotherapy targeting 
PD-L1/PD-1 might be effective in treating advanced 
MTC. Several ongoing trials of immunotherapy in treating 
advanced MTC are under study, but no definite result has 
been reported. Although the FDA has approved several 
anti-angiogenic multikinase inhibitors (aaMKIs) in treating 
advanced MTC (discussed below), novel methods are still 
required to treat patients who fail to respond to aaMKI. 
Immunotherapy might be a choice in the future (66). 

Targeting therapy in MTC

By far, surgery is still to be the only therapeutic method 
in treating most MTCs. Although radioactive iodine and 
TSH-suppressive therapies can treat differentiated thyroid 
carcinoma, they have no role in the management of MTC 
since the neuroendocrine-derived tumor cells do not 
concentrate iodine or respond to TSH in the same manner 
that follicular cells do. With the development of targeted 
therapy in treating advanced or unresectable MTC two 
aaMKIs, vandetanib, and the American FDA approved 
cabozantinib for the treatment of advanced MTC in 2011 

and 2012, respectively. In the phase III trials of both drugs, 
patients with metastatic MTC had a significantly longer 
median progression-free survival (PFS) in the treatment 
group than in the placebo group (67-69). Both of the 
drugs did not show their efficacy in improving the OS of 
patients (67-70). Nevertheless, both studies met their pre-
specified primary endpoints for improving PFS and were 
thus approved by the FDA as the first effective drugs for the 
treatment of advanced MTC.

Further, evidence showed that cabozantinib provided 
the most significant clinical benefit to patients with RET 
M918T or RAS mutation (71). The most common adverse 
drug reactions for vandetanib and cabozantinib were 
diarrhea, rashes, nausea, hypertension, and headaches 
(67,69,72,73). It is worth noting QT prolongation 
represented a rare but critical adverse event in the therapy 
of vandetanib, which potentially evolved into torsade de 
pointes and sudden death (67,73). Hence, the drug can 
only be prescribed by qualified physicians and should be 
used under close surveillance. Despite the advances in the 
management of metastatic MTC, aaMKIs show significant 
off-target toxicity and limited efficacy (67,69). LOXO-292 
and BLU-667, a new generation of small-molecule TKIs, 
are highly selective RET inhibitors, and both of them 
showed better therapeutic efficacy than approved MKIs in 
the preliminary studies (74-77). At present, clinical trials of 
both are currently under evaluation (76).

The role of calcitonin/procalcitonin/CALCA gene 
transcripts in diagnosing and handling MTC

Calcitonin is a hormone that regulates the level of serum 
calcium, secreted by the C cells of the thyroid and 
metabolized by the kidneys (78). Calcitonin is regarded 
as a sensitive marker for diagnosing MTC, and is used 
for postoperative monitoring of MTC patients (3,79-81).  
However, the role of routine calcitonin screening in 
patients with thyroid nodules is still questionable, since 
the incidence of MTC is low and other non-neoplastic 
and neoplastic conditions may cause the increase of serum 
calcitonin (79,82,83). Calcitonin measurement in aspiration 
needle washout of thyroid nodules and neck lesions is 
reported to have a higher sensitivity than traditional 
cytology in diagnosing MTC. It may represent an ancillary 
tool utilized in patients with high serum calcitonin to avoid 
false-negative MTC by cytology (83,84). A large-scale 
retrospective analysis shows that postoperative biochemical 
remission of serum calcitonin is significantly correlated with 
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a decrease of the 5-year recurrence rate, but not with the 
improved 5-year survival rate (81).  

Procalcitonin is the precursor of calcitonin. It is 
widely used as an indicator of severe infection, sepsis, and 
multiple organ failure (85-87). In recent years, a growing 
body of research has shown that procalcitonin presents 
an equivalent or even superior alternative of calcitonin in 
the management of MTC (88-92). Camacho et al. show 
that the expression of CALCA mRNA from the peripheral 
blood presents higher sensitivity, specificity, together with 
higher positive predictive value, and negative predictive 
value than did serum calcitonin (93). Thus, the detection 
of CALCA mRNA expression could serve as an alternative 
to the calcitonin-stimulation test since the former is more 
convenient to perform (93). 

Conclusions

Advanced MTC is still one of the most challenging 
mal ignancies  for  c l inic ians .  With the increas ing 
development of molecular detection techniques, many 
genetic alterations have been discovered, while RET 
and RAS point mutations are still the most frequent and 
most significant changes. There is growing evidence that 
genetic changes might be used to predict the clinical 
outcome of patients with sporadic MTC, on different 
RET point mutations and RAS mutations. The in-depth 
understanding of molecular mechanisms and immune 
microenvironments of sporadic MTC has prompted the 
development of targeted therapy and immunotherapy. It is 
promising that the combination of TKI-targeted therapy 
and immune checkpoint inhibitors might be a novel 
therapeutic approach for treating patients with advanced 
MTC according to the individual tumor mutation profile 
and tumor microenvironment.
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