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Introduction

Primary aldosteronism (PA) is the most common form 
of secondary hypertension, and it accounts for 5–8% of 
hypertension (1-6) and 11–20% of resistant hypertension 
(7-9). PA is characterized by inappropriate autonomous 
production of  aldosterone via renin-independent 
mechanisms (10). Most PA patients exhibit a sporadic 
form, whereas 5–6% of the cases are caused by familial 
disease (11). Approximately 60–70% of PA cases can be 
attributed to bilateral hyperaldosteronism (BHA), with the 
remaining 30–40% being caused by unilateral aldosterone-
producing adenomas (APA) (2,12). Uncommon forms 
of PA include unilateral adrenal hyperplasia and adrenal 

carcinoma (13). 
Differentiation of the uni- and bilateral forms of PA is 

important for guiding therapy. Unilateral PA can benefit 
from adrenalectomy and BHA requires indefinite medical 
therapy, which typically incorporates a mineralocorticoid 
receptor antagonists (MRA) (14,15). Adrenal vein sampling 
(AVS) is the most reliable method for distinguishing between 
APA and BHA (10). However, there are several caveats 
to the AVS methodology and interpretation of hormonal 
data. Despite being highly predictive of outcome (10), this 
procedure is laborious, invasive, and expensive. Additionally, 
AVS is performed in a limited number of referral centers, and 
it is dependent on highly-skilled interventional radiologists 
with large annual AVS volume (16-18). 
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A simple blood test that identifies APA-derived serum 
steroid biomarkers would help distinguish patients who 
will benefit from adrenalectomy from those who should be 
treated with medical therapy. Such biomarkers could also 
conserve healthcare resources by sparing many patients 
expensive imaging and invasive studies. Finally, the utility 
of such biomarkers would increase the rate of PA screening, 
facilitate PA diagnosis and appropriate treatment, and thus 
reduce the burden of cardiovascular and renal complications 
which affect PA patents disproportionately more than those 
with essential hypertension.

Hybrid steroids as diagnostic markers for 
differentiation of APA from BHA

Over  the  pas t  25  years ,  the  appl icabi l i ty  of  the 
18-oxygenated derivatives of cortisol, 18-oxocortisol 
(18oxoF) and 18-hydroxycortisol (18OHF) for subtyping 
PA as uni- or bilateral, has been of interest (19-27). Several 
studies have shown higher levels of 18OHF and 18oxoF in 
PA patients compared to those with essential hypertension 
(23,28-30). High concentrations were also demonstrated 

in patients with familial hyperaldosteronism type 1 
(FH type I) (31,32). FH type I accounts for <1% of 
cases of PA (11) and is caused by a chimeric gene that is 
composed of the promoter of 11β-hydroxylase (CYP11B1) 
fused with the coding region of aldosterone synthase 
(CYP11B2) (31). Like CYP11B1, this CYP11B1/CYP11B2 
chimeric enzyme is present in the zona fasciculata (ZF) of 
the adrenal cortex and is regulated by ACTH. As a result, 
the CYP11B1/CYP11B2 chimera is able to use cortisol as a 
substrate to produce 18OHF, which is further metabolized 
to 18oxoF (19,23,30,32-34) (Figure 1). These metabolites 
of cortisol are designated as “hybrid” steroids owing to 
their molecular structure comprising features of steroid 
metabolism which typically occur in the zona glomerulosa 
(ZG) (18-hydroxylation and 18-oxidation) and the ZF 
(17-hydroxylation) (31) (Figure 1). 

In the normal adrenal gland, expression of CYP11B2 is 
restricted to the ZG, while 17α-hydroxylase/17,20-lyase 
(CYP17A1) and CYP11B1 are expressed exclusively in the 
ZF and zona reticularis (Figure 2), thereby leading to low 
production of 18OHF and 18oxoF in normal subjects. 
Histologic studies have shown that some APA display a ZG-

Figure 1 The steroidogenic pathway for aldosterone and the ‘hybrid steroids’—18OH-cortisol and 18-oxocortisol. While only CYP11B2 is 
required for aldosterone production, both CYP17A1 and CYP11B2 contribute to the biosynthesis of the hybrid steroids.

Cholesterol 

StAR  
CYP11A1

Pregnenolone 17OH-Pregnenolone

11-Deoxycortisol

Cortisol

18OH-Cortisol 

18-oxocortisol

CYP11B1/
CYP11B2

(11β-hydroxylase)

HSD3B2 HSD3B2

17OH-Progesterone

CYP21A2 CYP21A2

CYP11B2
(11β-hydroxylase)

CYP11B2
(18-hydroxylase)

CYP11B1/
CYP11B2

(18-hydroxylase)

CYP11B2
(18-methyloxidase)

CYP11B2
(18-methyloxidase)

Progesterone 

11-Deoxycorticosterone

18OH-Corticosterone 

Corticosterone 

Aldosterone 

CYP17A1 
(17α-hydroxylase)

CYP17A1 
(17α-hydroxylase)



5Gland Surgery, Vol 9, No 1 February 2020

© Gland Surgery. All rights reserved.   Gland Surg 2020;9(1):3-13 | http://dx.doi.org/10.21037/gs.2019.10.22

like phenotype, with small, compact cells, while other APA 
are composed of large, lipid-rich cells, similar to those seen 
in ZF (35-38). Although transcriptomic analysis has not 
detected any differences in CYP11B2 mRNA expression 
between the different APA subtypes (39), higher CYP11B2 
protein expression has been observed in the APA with ZG-
like cells in some studies (35,37). Specific to APA with 
ZF-like histology is a higher expression of steroidogenic 
enzymes required for cortisol biosynthesis, such as 
CYP17A1 and CYP11B1 (40-42). The co-expression 
of CYP17A1 and CYP11B2 in these APA facilitates the 
production of hybrid steroids (21,33,43) (Figures 1,2). 

Ulick et al. performed the initial PA hybrid steroid 
studies in 1993 and demonstrated that urinary 18OHF and 
18oxoF were elevated in patients with APA compared to 
those with BHA (21,22). Numerous immunoassay studies 
followed that indicated higher plasma and urinary 18OHF 
and 18oxoF levels in subjects with APA vs. those with BHA 
(19,23,29). More recently liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) was used to quantify 
the hybrid steroids in APA and BHA, confirming some of 
the previous immunoassay analyses (20,25). Satoh et al. 
measured 18OHF and 18oxoF in the peripheral plasma of 
234 Japanese PA patients by LC-MS/MS and found that 
these steroids could discriminate APA from BHA with 
considerable specificity and sensitivity (20). In contrast, 
a European study of 216 PA patients indicated that both 
18oxoF and 18OHF displayed significant overlap between 
APA and BHA, thereby suggesting a limitation in the 

utility of these steroids as discriminators between the two PA 
subtypes (24). Nevertheless, this analysis presented a composite 
of 12 steroids that was able to correctly classify the PA subtype 
in 80% of the patients (24). A subsequent study from the same 
group revealed that APA with different underlying somatic 
mutations produce specific steroid fingerprints (44).

The hybrid steroids and KCNJ5 somatic 
mutation connection in APA

In 2016, Williams et al.  identified specific steroid 
fingerprints in adrenal vein (AV) and peripheral vein (PV) 
plasma from patients with APA with various underlying 
mutations (44). Of the 79 PA patients with unilateral PA 
included, 34% had APA harboring KCNJ5 (encoding 
the G protein-coupled inward-rectifying potassium 
channel 4, GIRK4) mutations, 11% had ATPase (ATP1A1 
(Na+/K+ ATPase α1-subunit), ATP2B3 (Ca2+ ATPase 3) 
mutations and 9% had CACNA1D (encoding the voltage-
dependent L-type calcium channel subunit α-1D, Cav1.3) 
mutations. In the remaining 46% of APA no mutations 
were identified. Patients with KCNJ5-harboring APA 
had the highest concentrations of 18OHF and 18oxoF in 
both the AV and PV plasma (44). The elevated levels of 
the hybrid steroids produced by the KCNJ5-mutated APA 
could be explained by their predominantly ZF phenotype 
(elevated CYP17A1) along with CYP11B2 expression 
(35-38) (Figure 2). Conversely, APA with ATP1A1 , 
ATP2B3, and CACNA1D mutations, were shown to be 

Figure 2 Histologic findings in a normal adrenal (A,B,C) and an APA harboring a KCNJ5 mutation (D,E,F). Immunohistochemical analysis 
illustrates that CYP11B2 expression is localized in the zona glomerulosa of the normal adrenal (B), while CYP17A1 is expressed in the 
zona fasciculata and zona reticularis (C). A KCNJ5 mutation-harboring APA showed intratumoral CYP11B2 expression heterogeneity, with 
distinct CYP11B2 positive and negative regions within the tumor (E). The APA also exhibits elevated CYP17A1 expression in the tumor 
region. Scale: 5 mm.
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smaller in size and to be composed principally of ZG-
like cells (35-38). Assembling a 7-steroid panel measured 
in PV plasma, including aldosterone, 18oxoF, 18OHF, 
11-deoxycorticosterone (11-DOC), corticosterone, 
cortisol, and 21-deoxycortisol, William et al. were able to 
classify 92% of APA according to the underlying somatic  
mutation (44). In a subsequent study, the same group used 
steroid profiling to differentiate patients with micro-APA, 
macro-APA and BHA (45). Patients with macro-APAs, 
which frequently harbor KCNJ5 mutations, displayed 
higher concentrations of aldosterone and the hybrid steroids 
as compared with patients with micro-APA and BHA (45). 
These findings were in concordance with a recent analysis 
of APA tissue by comprehensive mass spectrometry imaging 
in relation to mutation status, immunohistochemical 
reports of steroidogenic enzymes and steroid profiles from 
139 patients (46). Increased intratumoral intensities of 
18OHF and 18oxoF were seen in KCNJ5-mutated APA. 
Additionally, two in vitro studies corroborated the finding 
that expression of a KCNJ5 mutation in the adrenocortical 
HAC15 cell line results in a significant increase in CYP11B2 
gene transcription, and elevation in the production of 
aldosterone and the hybrid steroids (47,48). 

The utility of hybrid steroids as promising discriminators 
between APA and BHA in Japanese patients with PA (20) 
could be attributed to the high prevalence of APA KCNJ5 
mutations in this population (49,50). Tezuka et al. recently 
highlighted the potential of 18oxoF as biomarker for KCNJ5-
harboring APA in Japanese patients in a study that measured 
its intratumoral and peripheral serum levels in patients with 
PA who underwent unilateral adrenalectomy (51). This study 
showed that APA harboring KCNJ5 mutations demonstrated 
enhanced synthesis of 18oxoF owing to elevated intratumoral 
cortisol production which could be used as substrate by 
CYP11B2. These tumors also had increased CYP11B1 and 
CYP11B2 double-positive hybrid cells compared with APA 
harboring the wild-type KCNJ5 gene (51). In addition to 
aberrant KCNJ5-related sporadic PA, the hybrid steroids have 
also been shown to be elevated in familial hyperaldosteronism 
type III (FH type III) (52,53) which was described by Geller 
et al. in 2008 as an early onset and severe form of primary 
aldosteronism (52) and was shown to be caused by germline 
mutations in KCNJ5 (53).

Somatic KCNJ5 mutations in APA—the 
mechanics

The product of KCNJ5, GIRK4 is a member of the G 

protein-activated inwardly rectifying K+ channel subfamily 
and is localized on the plasma membrane of tissues such as 
the heart, central and peripheral neurons along with various 
endocrine tissues (54,55). Tissue transcriptome analysis, 
however, suggests that the adrenal is by far the tissue with 
highest levels of the transcript encoding GIRK4. ‘Inward 
rectifiers’ are a class of K+ channels that conduct large 
currents in the inward direction at membrane voltages 
negative to the K+ equilibrium potential. The primary 
structure of this channel consists of 2 membrane spanning 
helices flanking one extracellular pore-forming region in 
between and cytoplasmic N- and C-termini that contribute 
to the pore structure (56,57). The pore-forming domain 
constitutes the K+ ion selectivity filter of the channel 
which is characterized by the signature sequence Gly-Tyr-
Gly (57,58). This sequence allows stringent passage of 
the larger K+ ions through the channel into the cell and 
prevents the entry of smaller, more abundant Na+ ions (59). 
Immunohistochemical studies have shown that GIRK4 is 
localized mainly to the ZG of the human adrenal cortex and 
to the outer part of the ZF (40,53,60). GIRK4 and other 
K+ channels maintain the hyperpolarized state of the ZG 
cell by allowing an outward flow of K+ conductance (54,55) 
(Figure 3). 

The advent of large-scale methods of analyses such as 
gene sequencing [e.g., next generation sequencing (NGS) 
and whole exome sequencing] in the last decade has 
helped to elucidate the genetic landscape and molecular 
mechanism of PA pathogenesis. The genetic basis of PA was 
largely an uncharted territory until Choi et al. used exome 
sequencing to first report a role for somatic mutations in 
driving autonomous aldosterone production in APA in 
2011 (53). This study identified two “hot-spot” somatic 
mutations (p.Gly151Arg (G151R) and p.Leu168Arg 
(L168R) substitutions) in KCNJ5 (53) (Figure 4). These 
originally described KCNJ5 somatic gain-of-function 
mutations were located near or within the selectivity filter 
and disrupt its ion selectivity by facilitating indiscriminate 
entry of Na+ through the pore of the outer tunnel (53). 
The resulting depolarization of the cell membrane 
induces the opening of the voltage-gated Ca2+ channels 
leading to elevated intracellular Ca2+, increased activation 
of the calcium signaling pathway, augmented CYP11B2 
transcription and aldosterone biosynthesis (Figure 3). Two 
cell-based analyses from our group established that mutated 
KCNJ5 activates the acute and chronic regulatory steps 
of aldosterone production and that increased aldosterone 
production occurs along with elevations in CYP11B2, and 
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its regulatory transcription factors nuclear receptor related 
1 protein (NURR1) and activating transcription factor 2 
(ATF2) (47,60). Besides G151R and L168R which constitute 
90% of all the KCNJ5 APA mutations, 24 other KCNJ5 
mutations have also been detected in APA (40,41,53,61-
70,74-77) (Figure 4).

Along with their studies on the genetic causes of somatic 
APA, Choi et al. also established the genetic basis of FH type 
III by identifying a novel gain-of-function KCNJ5 germline 
mutation in a father and his two daughters, all with PA (53). 
This substitution mutation—p.Thr158Ala (T158A)—is 
located near the selectivity filter of the channel pore. The 

Figure 3 Regulation of adrenal aldosterone production by wild type and mutated GIRK4 (KCNJ5). (A) Adrenal glomerulosa cells with wild 
type GIRK4 (KCNJ5) are in a hyperpolarized state as a result of high resting K+ conductance. (B) In pathological conditions, adrenal cells 
carrying mutations in GIRK4 (KCNJ5) demonstrate indiscriminate conductance of Na+, resulting in chronic cell membrane depolarization 
and constitutive activation of CYP11B2 and aldosterone production.

Figure 4 KCNJ5 mutations in APA. The most common KCNJ5 mutations (G151R, L168R and T158A) occur in or near the selectivity filter  
(38,43,44,56,64-66,68-77). Other reported mutations are listed in the table.
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T158A mutation was later also detected in sporadic APA by 
Mulatero et al. in 2012 (76). Adrenocortical cell line studies 
demonstrated that the p.Thr158Ala mutation in KCNJ5 
causes an increase in aldosterone production via membrane 
depolarization and Na+ and Ca2+ influx (47,48). While 
patients carrying the germline mutations G151R (similar 
to the recurrent somatic KCNJ5 mutation in APA), T158A 
and p.Ile157Ser, presented with early onset and a severe 
PA phenotype with drug-resistant hypertension and 
adrenal hyperplasia (71,72), those with the p.Gly151Glu 
(G151E) (72) and p.Tyr152Cys (73) variants exhibited a 
remarkably milder phenotype.

Somatic KCNJ5 mutations in APA—the 
demographics

The last 10 years have resulted in a plethora of studies 
in the field of PA that have investigated the presence 
and racial prevalence of the various aldosterone-driving 
somatic mutations in APA, including KCNJ5. Collaborating 
investigators from the European Network for the Study 
of Adrenal Tumors (ENS@T) have conducted the largest 
mutation prevalence studies to date assessing 474 APA with 
the sequencing directed at the previously reported mutation 
hotspots (39). This multicenter study demonstrated the 
presence of somatic mutations in 54% of APA, with genetic 
abnormalities in KCNJ5 representing 38% (39). This study 
corroborated the frequency of somatic mutations in KCNJ5 
that were identified in previous smaller studies in European 
populations (35,74,75,78,79). Of note, the prevalence 
of reported somatic mutations in APA has been shown 
to vary by race. In particular, somatic KCNJ5 mutations 
are much more common in East Asian patients than in 
Europeans (70% vs. 38%) (36,49,50,65,68,80-82). We 
recently conducted two studies wherein we determined the 
incidence of APA somatic mutations in White Americans 
and Americans of African descent (Blacks) (41,77). Instead 
of using grossly dissected snap frozen tumor tissue as was 
done in previous studies, we applied a unique sequencing 
approach by utilizing a CYP11B2 immunohistochemistry 
(IHC)-guided comprehensive NGS protocol targeting 
the entire coding regions of a panel of genes frequently 
mutated in APA. While the KCNJ5 gene aberrations were 
most frequently seen in White Americans (43%) (41), 
Blacks showed a different APA somatic mutation profile 
with KCNJ5 (34%) being the second-most mutated gene 
after CACNA1D (77). Notably, the unique approach of 
utilizing the CYP11B2 IHC-directed adenoma selection 

and a comprehensive, full coding sequence-based NGS 
approach overturned the previously published prevalence 
by demonstrating that over 90% of APA have a known 
aldosterone-driver gene. However, in agreement with 
previous studies that utilized non-IHC-directed, selected 
exon sequencing‒based approaches, aldosterone-driving 
mutations were not identified in CYP11B2-negative 
tumor samples by the IHC-guided method (41,77,83,84). 
Collectively, this suggests that the heterogeneity of 
CYP11B2 expression in PA adrenals could have led to 
discrepancies between macroscopic-guided sequencing and 
the CYP11B2 IHC-guided sequencing results. 

While KCNJ5 mutations in APA have consistently 
been reported to be more frequent in females in Western 
populations (35,39,41,74,75,77-79), this distinction was 
not clear in East Asians where the prevalence was very high 
in both men and women (36,49,50,65,68,80-82,85). The 
association of KCNJ5 mutations with sex (women higher 
than men), younger age, pronounced hyperaldosteronism 
and larger tumor size was also demonstrated in a meta-
analysis study comprising 1,636 APA patients from 13 
studies (86). 

Conclusions and perspectives

The current diagnostic work-up for PA is a complex 
multitiered process (10). Although the Endocrine Society 
Guidelines recommend measurement of the aldosterone-
to-renin ratio (ARR) as an appropriate initial screening 
test for PA, ARR is only about 80% specific and sensitive 
(87-89). Furthermore, it requires confirmatory testing 
of aldosterone production following sodium loading and 
volume expansion (10). More importantly, the ARR is 
elevated in patients with both BHA and APA. Consequently, 
the biochemical diagnosis of PA does not differentiate 
between the two primary causes of PA, and follow-up 
procedures are needed to classify patients with PA. The 
major impediments to screening for and treating PA are the 
complexities in the later stages of the evaluation. Currently 
available laboratory tests can confirm the diagnosis of PA, 
but neither these tests, nor current imaging studies can 
determine which adrenal gland(s) is (are) the source(s) 
of aldosterone. There is general agreement that cross-
sectional imaging studies such as computed tomography 
scanning or magnetic resonance imaging cannot distinguish 
between most APA and BHA cases. This failure derives 
from both the small size of most APA and the high 
prevalence of nonfunctional adrenocortical adenomas in 
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the general population, most of which do not produce 
aldosterone. Thus, the expensive, technically cumbersome 
and invasive AVS technique remains the gold standard for 
the subtyping of patients with PA. The variable success rates 
of AVS methodology from center-to-center has prompted 
researchers to consider alternative non-invasive diagnostic 
tools that could aid in diagnosing and classifying the 
different forms of PA.

Recent advances in the diagnostics  of  PA have 
been possible with the emergence of the LC-MS/
MS methodology which allows steroid profiling in an 
individual patient. Increasing evidence suggests that steroid 
fingerprinting might be a major determinant in not only 
differentiating APA from BHA, but also in providing 
genotype-phenotype associations of APA, thereby making 
it a useful tool in simplifying the complex diagnostic work-
up in patients with suspected PA. The utility of hybrid 
steroids—18OHF and 18oxoF—as potential differentiators 
between APA and BHA, has been tested for the past three 
decades with encouraging results. In fact, a panel of 12 
steroids including the hybrid steroids in peripheral plasma 
that was put forth by Eisenhofer et al. was successful in 
classifying 80% of the PA cases as APA or BHA (24). The 
same research group also demonstrated that the putative 
application of steroid profiling for subtype classification of 
PA is likely due to the association of the steroid metabolome 
with somatic APA aldosterone-driver mutations (44). 
Notably, they showed that the high levels of hybrid steroids 
could be a signature for KCNJ5-mutated APA. Moreover, 
steroid profiling of peripheral blood was able to correctly 
categorize 92% of the somatic APA mutations. They 
recently took a similar diagnostic route in the case of a 
55-year-old female patient with left adrenal mass in whom 
AVS was a failure (90). The patient’s peripheral plasma 
displayed increased levels of aldosterone, 18OHF, 18oxoF, 
11-DOC, 11-deoxycortisol (90) which were indicative 
of a macro-APA as a result of a KCNJ5 mutation (45). 
Adrenalectomy was recommended for this patient and 
the diagnosis was later confirmed by genetic testing and 
histopathology (90). This example highlights the clinical 
applicability of steroid fingerprinting in the PA work-up. 

The inclusion of steroid profiling in the PA diagnostic 
chart has several advantages. Sixty percent to 70% of 
patients with PA have BHA and thus receive no benefit 
from the AVS procedure, because they are treated medically 
rather than surgically. Certain populations would benefit 
from the new diagnostic approach following ARR wherein 

steroid profiling could help identify patients that need 
to undergo the CT and AVS and bypass invasive testing 
in patients with BHA, who require lifelong personalized 
medical treatment. KCNJ5 mutations, which are more 
prevalent in women and constitute the majority of East 
Asian APA cases of both sexes, could be diagnosed rapidly by 
serum hybrid steroids. Given the high prevalence of KCNJ5 
mutations in PA patients, macrolides might potentially 
be used to identify patients that bear APA with KCNJ5 
mutations (91) and as targeted personalized treatments for 
these patients. Inclusion of steroid fingerprinting in the PA 
diagnostic work-up will reduce healthcare cost and increase 
the impact on patient safety for almost 60–70% PA patients 
by reducing radiation exposure and application of invasive 
procedures. Prospective studies will, however, be needed to 
validate whether this method is a better alternative to the 
invasive and technically onerous AVS.
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