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Introduction

Prostate cancer (PCa) is the most common non-cutaneous 
cancer in western countries (1) with more than one million 
cases currently diagnosed annually (2). Over the past  
25 years, the improvement of treatments, together with the 
early diagnosis, allowed an increasing from 69% to almost 
99% of the 5-year overall survival (OS) for PCa, but these 
therapies are also associated with considerable morbidity, 
particularly in genito-urinary dysfunction (1-5).

Therefore, clinicians and patients need to assess together 
the balance of risks and benefits of therapies using a shared 
decision-making approach: the aim is to treat the PCa with 

the lowest risk of recurrence and, at the same time, with 
minimal morbidity from side effects or complications (6). 

The conventional approach includes definitive treatment 
as the radical prostatectomy (RP) for organ-confined 
tumor and radiation therapy (RT) for extraprostatic  
tumor (7) .  The most  important  s tep of  pat ient ’s 
management is to differentiate between intra-capsular PCa 
(stage T1 or T2, according to the TNM staging system) 
and locally extraglandular PCa (stage T3) (8). Indeed, it 
was demonstrated that curative treatment is most likely 
when the TNM stage is ≤ T2c, namely when extracapsular 
extension (stage T3a), seminal vesicle invasion (stage T3b) 
or metastatic disease (N+ and/or M+) are not present (8-10). 
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Advanced PCa is decreasing because of stage migration 
with prostate-specific antigen (PSA) testing (11). On the 
other hand, the introduction of PSA-screening, although 
it has been associated with a significant reduction in PCa 
mortality, resulted in overdiagnosis and overtreatment of 
indolent PCa, exposing many men to non-negligible risks 
and complications without real and concrete benefits (12). 
For these reasons, conservative treatment option, specifically 
active surveillance (AS), became increasingly used, 
demonstrating as a legitimate choice for patients with low 
risk PCa without any additional morbidity (13). As a result, 
men with localized PCa face a difficult choice: AS versus 
RP. The available evidence from contemporary literature 
demonstrates that there is no relevant difference between 
AS and RP in 10 years OS (14,15). The patient’s dilemma 
is based on the significant rates of genito-urinary (erectile 
dysfunction and urinary toxicity, either as obstructive 
symptoms or incontinence) and rectal side effects of the RP 
and RT due to their side effects on the adjacent structures 
(neurovascular bundles, sphincter, bladder neck and rectal 
wall) (16-19). On the other hand, AS can be associated 
with psychosocial and financial burdens for participating  
patients (20). In order to overcome these obstacles and 
to maintain the oncological benefit of active treatment, 
while avoiding genito-urinary dysfunction and rectal 
complications, in the last decade the focal therapy (FT) has 
been evaluated as a novel strategy in selected patient with 
localized PCa, representing the middle ground between AS 
and more aggressive options like RP and RT (21).

FT is a well-established treatment of many other solid-
organ malignancies, including those in the breast (22,23), 
kidney (24,25), thyroid (26), liver (27,28), pancreas (29) and 
brain (30). The fundamental aspect of FT is the targeted 
destruction of neoplastic tissue with the preservation of 
surrounding healthy parenchyma (31). In the case of PCa, 
this approach allows a more favorable morbidity profile, 
with the potential for improved urinary and fecal continence 
and sexual potency outcomes (32,33). Several energy 
modalities are available and have been used for the purposes 
of FT: irreversible electroporation (IRE), high-intensity 
focused ultrasound (HIFU), cryotherapy, focal laser ablation 
(FLA), photodynamic therapy (PDT), brachytherapy (BT) 
and radiofrequency ablation (RFA) (34,35).

The approach for PCa FT requires, as the first step, to 
define a cohort of patients whose PCa features are of higher 
risk than those indicated for AS and of lower risk than those 
for RP. These patients should undergo multiparametric 
magnetic resonance imaging (mpMRI) with the aim to 

select the target lesion within the prostate, namely the 
index lesion. The final step is to select types of energy 
suitable to treat and accomplish an oncological safe organ-
sparing ablation with minimal toxicity, based on tumor 
characteristics and location (21,36-38).

Methods

Using the terms “prostate cancer” or “prostatic neoplasms” 
and “focal” or “partial” or “targeted” and “ablation” 
contained in title and/or abstract and/or keywords, a 
comprehensive literature review was conducted through 
Medline, Scopus and Google Scholar (from January 1990 to 
May 2017) databases. 

Rationale of PCa FT

PCa has a very long evolution and this involves that patients 
who receive the diagnosis do not necessarily require 
therapy: most of PCa patients with low risk of clinically 
significant disease, neither die prematurely nor have a 
reduced quality of life (31,39,40). However, although 
overtreatment of patients with low risk PCa with RP is 
declining, it still occurs (6). 

The use of PSA-screening has led to an impressive 
increase in the number of clinically insignificant PCa that 
are being detected and most of them undergo RP: between 
2004 and 2007, 58% of men were treated with RP in 
comparison to less than 10% by AS (6,41). RP can cause 
loss of erectile function (the most common complication), 
incontinence and rectal toxic effects such as diarrhea, 
bleeding, and proctitis (21,34,42). Some physicians argued 
that for man who need treatment RP is effective and the 
patient has to accept the side effects (6). However, this 
same argument formerly used for other cancers (e.g., 
breast, kidney, liver, pancreas) is now obsolete (22-25,27-
29,31,33). Additionally, patients are able to evaluate the 
benefits of their treatment (6) and nowadays men are not 
willing to accept any side effect unless they gain years of life 
expectancy in return (6,43). 

Several recent studies have shown that screening for 
PCa, at worst, are of no benefit in reducing mortality (44) 
and, at best, prevent the death of 1 man for every 48 men 
who are treated over a 10-year period (45). On the other 
hand, there is not yet a definitive way to intercept men who 
will die from the PCa. Efforts have thus been focused on 
reducing the considerable burden imposed by complications 
related to treatment (46) and developing less radical and 
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invasive therapy to treat men with low or moderate risk 
for clinically significant PCa. The aim of FT is to treat 
exclusively tumoral zones and to preserve the remnant 
gland resulting in lower incidence of side effects and 
complications compared with radical therapies.

A common criticism of the FT argues that PCa is 
tipically multifocal with only 15% of men having truly 
unifocal PCa (47). However, there is now evidence that it 
is the highest size and grade index lesion that drives the 
progression to extraglandular extension and metastases 
(6,48). Moreover, using genomic analysis among 30 men 
who had died of disseminated PCa, Liu et al. found that 
most metastatic PCa arise from a single precursor cancer 
cell (49) reinforcing the hypothesis that the natural history 
of the disease is driven by the index lesion (35,46,50). Risk 
stratification of the index lesion predicts the outcomes, 
irrespective of the presence of unilateral or bilateral  
PCa (51). Thus, FT of the index lesion alone might provide 
acceptable oncological outcomes because residual PCa in 
the untreated area does not compromise long-term disease 
control (31,46).

Selection criteria for FT

FT developed as an alternative way between AS, given the 
inherent risk of reclassification at subsequent repeat biopsy 
and due to the cancer-related anxiety, and RP, especially 
considering the urogenital side effects and complications 
of treatment (35,42,52). Prospective studies comparing RP 
to AS demonstrated that patients with low risk PCa are less 
likely to benefit from treatment than those with high and 
intermediate risk PCa (35,52). Therefore, FT should be 
considered as a less aggressive alternative compared with RP 
in men with significant disease, excluding patients with very 
low risk PCa eligible for AS (35). The International Task 
Force of Prostate Cancer outlined the use of FT in selected 
patients with low risk PCa in 2007 (52). However, further 
publications highlight the increasing use of FT in men 
with intermediate risk PCa (39,40). The 2015 international 
multidisciplinary consensus on inclusion criteria for FT 
candidates selection for trials included patients with PSA 
<15 ng/mL, clinical stage ≤ T2a, GS =3+3 or GS= 3+4 
(35,37). No tumor volume has been established as a limit 
for FT (21). 

At the best of our knowledge, at least 20 clinical trials on 
FT in PCa are actively recruiting; 3 of them were recruiting 
patients with low risk PCa and 17 were recruiting men with 
low risk or intermediate risk (GS <8) PCa (31). Accordingly, 

current opinion suggests that suitable candidates for FT can 
have low or intermediate-risk, with GS >6 PCa localized to 
one lobe (42) and life expectancy ≥10 years (21). Patients with 
a single focus of GS =3+4 PCa with limited surrounding 
tissue of GS =3+3 and patients who are particularly 
motivated to receive a low-morbidity treatment could be 
suitable candidates (37), but they should be informed about 
the lack of long-term follow-up data on the oncological 
outcome of FT (21).

Detection of the index lesion to be treated 

The essential for succesfull FT is the definite identification 
and localization of the PCa’s index lesion (46,48) and 
mpMRI is actually considered the most accurate imaging 
technique for clinically significant PCa detection and 
localization (7,53-55). In order to improve accuracy in 
detecting PCa, an advanced mpMRI paradigm has been 
developed in the last decade to obtain both anatomical and 
functional images (53,56). In 2015, the second version of 
Prostate Imaging Reporting and Data System (PI-RADSv2) 
helped to improve the reproducibility in the reading of 
mpMRI between different centers and radiologists (57), 
reaching very high sensitivity rate of diagnosis and 
localization of clinically significant PCa (54,58,59). Both 
T1-weighted imaging (WI) and T2-WI should be obtained 
for all prostate mpMRI. T1-WI determines the presence of 
hemorrhage within the gland (57) and the “T1 hemorrhage 
exclusion sign” represents an additional aid for localization 
of larger foci of PCa on mpMRI performed after biopsy (60). 
On T2W images, PCa appears as hypointense focal lesions; 
however, this appearance is not specific and can be seen in 
various conditions such as prostatitis, benign hyperplasia, 
biopsy-related scars, and after FT (57). Therefore, the 
diffusion-weighted imaging (DWI) and the apparent 
diffusion coefficient (ADC) map are the real added-value 
to this imaging technique since they allow assessment of 
tissue cellularity: in PCa, the cellularity in the lesion is very  
high (61), then the lesion appears hypointense on ADC 
maps and normal tissue appears bright (57). Dynamic 
contrast-enhanced MRI (DCE-MRI) is a valuable tool 
in providing a map of blood flow of the prostate, which 
is increased with more vascular permeability in PCa (62) 
and it is useful not only for the detection of PCa (63,64), 
but also when there is suspicion of residual or recurrent 
disease after RT or FT (65). After FT, mpMRI is used to 
assess the extent and distribution of the expected necrosis 
in the target region: on contrast-enhanced T1-WIs, non-
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enhancing low-signal-intensity regions are expected at sites 
of treated PCa (representing necrosis), while focal areas of 
enhancement (representing viable tissue) are suspicious for  
recurrence (65). In the last decades, a resurgent interest 
for functional imaging based on a special theory named 
intravoxel incoherent motion (IVIM) developed (66) 
and there are studies demonstrating that extract IVIM 
parameters in mpMRI is clinically relevant for PCa 
detection (67-69). One appealing feature of these data is 
that applying IVIM protocol, the perfusion information 
could be obtained without the need for intravenous contrast 
media (68,70,71), which is especially relevant considering 
nephrogenic systemic fibrosis due to the gadolinium-based 
contrast (72,73) and the rising concern of gadolinium 
deposition in neural tissues (74).

Lastly, new imaging fusion platforms allow utilizing 
functional properties to target candidate lesions for 
biopsy and FT (75). MRI-guided biopsies of suspicious 
lesions were shown with increased accuracy compared to 
conventional blind and random biopsies (13,76). However, 
some recent studies showed an mpMRI underestimation 
of the true histological tumor volume and boundaries, 
which have key implications in planning and performing 
FT procedures (77). In 2015, Le Nobin et al. evaluated 
the correlation between mpMRI and histopathology for 
PCa volume and contours estimation using an automatic 
deformable 3D co-registration platform. They found that 
histological tumor boundaries tended to be underestimated 
by mpMRI especially for GS ≥7: for this reason a 9 mm-
safety margins around the visible tumor on mpMRI should 
be applied during FT procedures for effective ablation of 
the entire PCa (78).

Techniques

IRE 

IRE corresponds to a non-thermal ablation modality that 
uses short electric pulses to create irreversible pores in the 
cell membrane, thus, causing cell death to the inability 
to maintain homeostasis (79). IRE uses needle electrodes 
placed in or around index lesion to deliver a series of 
brief direct-current electrical pulses with the intention of 
inducing a permanently porous cell membrane, which result 
in cell apoptosis (80). Pathology specimens have clarified 
that IRE lesions cause a complete destruction of tissue 
extended directly up to the vessel wall, avoiding completely 
the heat sink effect, a common problem in the thermal 

ablation techniques. At the same time, IRE lesions show a 
sharp demarcation between ablated and non-ablated tissue 
and, if the correct ablation protocols are respected, that 
can lead to the saving of all the neuro-vascular structures 
next to the treated area: this characteristic has major 
implications, particularly in the prostate, where preservation 
of blood flow is a key component of maintaining erectile  
function (81).

IRE requires a transperineal approach for electrodes 
placement and patients need general anesthesia with 
deep muscle paralysis (82). The number of electrodes 
used depends on the size and the shape of the index  
lesion (35). In the design of the IRE protocol the voltages 
on the electrodes and the distances between the electrodes 
are chosen in such a way as to produce a range of IRE 
fields that encompasses the entire undesirable area of 
tissue. The effects of the electrical pulses are a function 
of several parameters, including the electrical field, pulse 
length, pulse shape, interval between pulses and number 
of pulses. In addition, electrical pulses produce heat, which 
increases tissue temperature. Damage due to thermal effects 
is completely different from damage due to IRE. While 
IRE affects only the cell membrane and does not affect 
connective tissue, if the temperature during the application 
of IRE is sufficiently increased to induce thermal damage, 
it can cause the necrosis of connective tissue, blood vessels 
or urethra. Therefore, it is desirable when designing an IRE 
protocol to choose such parameters that, while inducing 
IRE damage, do not produce thermal modes of damage (83).

The first experience with IRE for Prostate Ablation was 
of Onik et al. in 2007 (81) reaching encouraging results 
and confirming that IRE lesions in the prostate had unique 
characteristics compared to thermal lesions. In particular 
the margins of the IRE lesions were very distinct with a 
narrow zone of transition from normal to complete necrosis 
and there was complete destruction within the index 
nodule and rapid resolution of the post-treatment lesions 
with marked shrinkage within 2 weeks. After this paper, 
the attention for this procedure grew and two human in 
vivo pilot studies have been building up with the purpose 
to determine the safety and the efficacy of IRE in the PCa 
treatment (84,85). A recent large cohort study by Van den 
Bos et al. (86) confirmed the safety and feasibility of IRE 
and farther it shows a promising oncological outcome. 

However, IRE has also some limitations, as it requires 
general anesthesia and it is still much more expensive 
compared to other FT techniques. Given these bounds, 
it is expected that IRE will be especially useful in treating 
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tumors otherwise non-treatable by other thermal ablation 
methods, or when tumors are particularly closed to vital 
structures as large blood vessels, bowel, nerves and ducts.

HIFU 

HIFU was initially used in urology to treat benign prostatic 
hyperplasia (87). A spherical transducer produces ultrasound 
waves generated by that deposit energy as they travel 
through tissues (35). HIFU allows the deposition of a large 
amount of energy into tissue, resulting in its destruction 
through cellular disruption and coagulative necrosis in 
the targeted area while preserving adjacent tissues (88). 
Efficiency of HIFU depends on acoustic characteristics of 
targeted tissue and a mathematic model has been developed 
to be optimized for PCa treatment (89).

Both US-guided probes and MRI-guided systems have 
been developed in HIFU treatment for PCa. US probes 
are inserted per rectum and incorporate both imaging and 
therapeutic transducers in one unit, whereas a prostate-
dedicated MRI-HIFU system makes use of either the 
transrectal or transurethral approach (87). In addition, 
neoadjuvant transurethral resection of the prostate can be 
combined with HIFU to reduce the gland size, facilitate 
tissue destruction and to minimize side effects (90). For 
some authors, MRI monitoring can be considered superior 
to US as a guidance tool because it has better anatomical 
and contrast resolution. Additionally, MRI offers great 
real-time thermometry, allowing for measurement of 
temperature changes and cumulative thermal dose, enabling 
predictions of the tissue damage extension (91).

Cryotherapy

Cryotherapy consists in cellular destruction by freezing: the 
cellular damages caused vary including direct (membranes 
disruption) and indirect lesions (ischemia and coagulative 
necrosis) (92). Cryotherapy was the first ablation technique 
evaluated as a possible treatment for PCa (93). Cryotherapy 
is feasible by insertion of dedicated interstitial needles 
using a transperineal approach under guidance of imaging, 
usually performed under general anesthesia (35). A nadir 
temperature of –40 to –50 ℃ is necessary to achieve 
systematic cell death (35). A rapid freezing followed by a 
more progressive reheating period provides the best results 
to induce a “cryolesion” (central necrosis and peripheral 
edema reaction) with maximal cellular damage (94) whom 
size may vary according to the type and number of needles, 

the distance between them, the duration of procedure and 
the number of freeze-thaw cycles (35). Two freezing cycles 
are required in the procedure firstly described by Onik  
et al. (95). Needles placement and cryotherapy procedure 
monitoring are performed under transrectal-US (TRUS) 
or MRI-real time monitoring (96). Cryotherapy has 
been extensively used both for whole and partial gland  
ablation (97), preserving genito-urinary structures and 
function from injury and suggesting acceptable disease 
control for both procedures (98).

FLA 

FLA’s action results from the absorption of radiant energy 
by tissue receptive chromophores inducing rapid heat 
production with irreversible damages, resulting in cell 
death (32). The thermal damage depends on two factors: 
the amount of heat energy delivered and the depth of 
light distribution. The first one is determined by both 
temperature and the heating duration. Studies involving 
theoretical models have demonstrated that the ideal 
temperature for prostate FT is generally assumed of 50 ℃ 
(78,99). Indeed, it has been assessed that, despite immediate 
protein denaturation could be obtained only for temperatures 
≥ 60 ℃, the use of temperature range of 40–60 ℃ could 
also induce irreversible damages if applied for a longer 
duration (100). Moreover, the extension of thermal lesions 
grows with the heating duration. Concerning the depth of 
light distribution, this depends on the wavelength of the 
laser. It was reported that wavelengths in the range of 590  
to 1,064 nm are the most adequate to induce a maximal 
photothermic effect in human tissue (101). After FLA, 
coagulative necrosis develops in 24–72 hours and treated 
areas appear as well-demarcated foci of necrosis surrounded 
by a thin rim of hemorrhage with no viable glandular tissue 
after vital staining (32,102).

FLA is currently considered a minimal invasive treatment, 
able to reduce the risk of healthy adjacent structures damage 
(102-104). Since 1993, when Amin et al. reported the first 
case of a clinical application of FLA for local recurrence 
of PCa (105), a number of studies in the following years 
have established the feasibility of FLA in PCa treatment 
(102,106-109). The largest series of patients was evaluated 
in 2009 by Lindner et al. (103) who performed a phase I 
trial treating 12 patients with biopsy proven low risk PCa 
with US-guided FLA. The authors concluded that FLA of 
low risk PCa is feasible and that the targeted region can 
be ablated with minimal adverse effects, representing an 
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alternative treatment approach to AS and RP in selected 
patients (103). 

However, some cautions are needed in order to avoid 
complications. Preoperative thermal damage prediction 
is required and dedicated software have been developed 
for the dosimetric planning, allowing the calculation 
of the light distribution, the temperature rise, and the 
extent of thermal damage (110). Furthermore, a correct 
FLA treatment requires the laser-diffusing fiber to be 
placed within the index lesion (110,111). Some authors 
assessed that a robot can be successfully used to provide 
adequate dose coverage of low-volume tumors with difficult  
location (32). Eventually, FLA requires a perioperative 
control of the ablated zone. One of the advantages of 
laser technology is that the control of temperature during 
the procedure can be performed with MRI: real-time 3D 
temperature maps could be obtained during FLA procedure 
and analyzing the acquired images with dedicated software 
to estimate the thermal changes. This possibility was largely 
explored in literature both in pre-clinical (112,113) and 
clinical studies (107-109). In 2017, Natarajan et al. (114) 
proposed to use as an alternative option, the employ of 
MRI-ultrasound fusion for guidance during FLA. The 
authors enrolled 11 men with intermediate risk PCa in 
a prospective pilot study and they used MRI-US fusion 
to guide laser fibers transrectally into index lesion and 
thermal probes for real-time monitoring of intraprostatic 
temperatures during laser activation, demonstrating that 
this technique appears safe and feasible (114).

PDT 

PDT implies the activation of a photosensitive agent (PS) 
using a source of light with a specific wavelength in the 
targeted tissue (35). The presence of oxygen is essential 
since the PDT action is based on the induction of chain 
reactions leading to the generation of radical intermediates 
and of the highly cytotoxic singlet oxygen by energy 
transfer from the photo-excited sensitizer. The latter can 
induce tissue necrosis either directly with a cytotoxic effect 
or indirectly causing an acute inflammatory response 
(35,115,116). Traditional PDT consists in the intravenous 
injection of a PS which is distributed throughout the body. 
Then under imaging guidance, standard BT stabilizing 
frames are placed to allow the positioning in the prostate of 
small energy-delivering probes that deliver PDT either to a 
portion of or to the entire gland (117). However, this kind 

of approach lacks of selectivity and it is linked with some 
post-treatment inconveniences such as collateral tissue 
necrosis to adjacent structures or general photosensitivity 
with consequent need to avoid sunlight exposure for some 
days after PDT (117). A possible solution is the employ 
of a variant of PDT called vascular-targeted PDT (VTP) 
that consists in the use of vascular-activated agents that are 
currently synthesized from native bacteriochlorophyll, a 
molecule produced in dark-growing bacteria under aerobic 
conditions (118). This strategy has some major advantages. 
Firstly, the radical oxygen species generated by these PS 
are strictly limited to the vascular bed, determining tissue 
necrosis only indirectly through vascular occlusion or 
vascular oxidative stress (119). Secondly, these PS are rapidly 
cleared first from the circulation and then from the liver. 
Hence, avoidance of sunlight and other forms of photonic 
radiation shortly after VTP is not strictly necessary (120). 
Furthermore, some authors (117,120) suggest that prostate 
connective tissue is less sensitive to VTP effect and reflects 
back into the gland a significant amount of the incident 
light produced during the intervention. The corollary of 
this theory is that VTP would allow a better preservation 
of extracapsular structures such as the neurovascular bundle 
or the adjacent organs. The conclusions of two consecutive 
clinical trials performed by the Trachtenberg group and 
other recent studies seem to confirm this fact, although 
further investigations are needed (121,122). Eventually, 
the lighting activation is achieved employing near infra-
red wavelengths using multichannel diode lasers that 
deliver illumination from cylindrical laser fibers placed in 
the prostate under US guidance (123). Also this fact can be 
considered an advantage, since the use of these wavelengths 
is associated to a deeper penetration into tissues, as it is 
convenient for large tissue volume ablations. Because 
optical characteristics of the prostate are variable, affecting 
the light absorption and physical effect of PDT and  
VTP (101), investigators developed dedicated software for 
the optimization of the parameters of treatment according 
to tumor and prostate characteristics on preoperative 
mpMRI (35). 

BT

BT is a kind of radiotherapy in which radiation is delivered 
to the cancer-affected organ by the insertion of seeds 
containing radioactive material. The biological effect is 
achieved thanks to the multiple ionizations induced via 
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the Compton Effect that cause DNA damages, cell cycle 
arrest and ultimately cell death (35). For PCa, whole-
gland BT has become one of the most used options for 
low and intermediate risk PCa (124). The most utilized 
radioisotopes are Iodine-125 and Paladium-103.

Two different BT modalities are employed to treat PCa, 
both performed via a transperineal approach: low-dose 
rate (LDR), in which radioactive seeds are permanently 
implanted into the prostate, and high-dose rate (HDR), 
in which the radiation is delivered by a source temporarily 
introduced into the prostate tissue, being administered in 
single or multiple fractions. While LDR-BT is an option 
for patients with low risk PCa (125), HDR-BT is often used 
in intermediate or high risk PCa in order to achieve dose 
escalation (7).

BT, although usually performed on the entire gland 
tissue, can be easily customized to treat a specific partial 
prostate volume at a specific dose level, and thus appears 
to be particularly suitable for FT (126). Considering 
the higher prevalence of PCa in the peripheral zone, 
an attractive concept has been to direct BT only to this 
part of the gland, sparing the anterior base (127). Before 
this subtotal approach, several groups had performed 
whole gland treatments with a boosted dose to the index  
lesion (128). Another technique focuses on the ablation of 
the half prostate affected by the cancer, with hemi-gland 
LDR technique (129,130). In 2013, Cosset et al. (126) 
reported on a pilot study in which only index lesions were 
treated in 21 patients with LDR technique. Although the 
limited follow-up of that series precluded any definitive 
data about relapse-free survival, the authors concluded that 
their approach was feasible and that focal BT, thanks to its 
ability to treat a well-defined partial prostatic volume with 
a precise dose, could stand as one of the best FT modalities 
to be proposed to carefully selected patients.

Traditional whole gland BT uses TRUS to visualize 
the entire prostate, to calculate its volume for treatment 
planning and to guide the implantation of radiation sources. 
In order to treat the specific gland volume affected by 
the disease, MRI is also widely used for the identification 
of the suspected area with good results (126,127). 
MRI-US fusion provides real time guidance to the  
procedure (124). An invasive localization method is the 
transperineal mapping biopsy performed via a template grid 
that is subsequently used for seed implantation (131). Lastly, 
SPECT images registered with CT has been employed to 
define intraprostatic biological target volume (132). 

RFA 

RFA treats tumors by delivering an alternating current, 
producing ionic agitation, which generates heat (with 
temperatures of around 100 ℃) thanks to the Joule effect, 
and eventually cause coagulative necrosis of the target  
tissue (133). Operatively, the procedure is performed 
inserting in the body a needle electrode connected to a 
generator that produces electromagnetic waves with a 
frequency in the order of 500 kHz (134).

There is limited literature regarding the use of RFA 
in PCa; however, RFA has proved to be safe and effective 
in the treatment of primary and secondary hepatic  
tumors (135) and promising results have been reported in 
various other neoplasms (136). Prostate RFA is performed 
with a transperineal approach, using TRUS for needle 
insertion guidance. A disadvantage of RFA, however, is the 
inability to precisely assess the extent of the thermal lesion 
using US, because there are no specific findings correlating 
with the post-treatment evolution of the index lesion. 
Therefore, TRUS is not reliable and cannot be used for 
monitoring the extent of necrosis, which has to be verified 
by MRI (134). Some technical difficulties need to be 
considered (137). Monopolar electrodes are susceptible to a 
cooling effect by adjacent blood vessels that limits the extent 
of tissue destruction. In addition, using standard monopolar 
RFA devices, it is difficult to obtain areas of consistent and 
complete cell-kill with precise margins. Another major 
obstacle comes from the technical difficulties in using MRI 
to guide the FT: the RF generator, indeed, may interfere 
with the radiofrequency pulses of the MR system and the 
needle electrode produces large image artifacts. Subtotal 
RFA has been described in cases of recurrent PCa after 
prior RT showing good results in term of tissue ablation 
and low complication rate (138). Given the paucity of 
data, the use of RFA for PCa remains experimental (139) 
and it is not still mentioned among the “Alternative Local 
Treatment Options” in the most recent guidelines produced 
by the competent European societies (7).

Outcomes 

Currently, insufficient data are available to evaluate the 
long-term oncological FT effectiveness in PCa. The studies 
on FT are small with a large heterogeneity in study design, 
target population, risk stratification, type of focal ablation, 
follow-up schedule and outcome measures of morbidity. 
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Also, the encouraging short-to-midterm outcomes comes 
from high volume expert centers and reproducibility still 
has to be confirmed by larger, standardized and controlled 
studies. 

Successful FT consists in effective ablation of the index 
lesion, improving oncological outcomes and preservation of 
surrounding structures as assessed by the very low incidence 
of urinary and sexual disfunctions. Published trials of FT 
have determined ablation success by using a predetermined 
protocol of mpMRI of the treatment zone with targeted 
biopsy as necessary (37). 

Oncological success has not been clearly defined, but 
its evaluation can be derived from the agreed definitions 
of treatment failure as assessed by PSA monitoring, post-
treatment biopsy sampling and rates of retreatment (31). 
Current literature uses the American Society Radiation 
oncology (ASTRO) criteria and the Phoenix criteria for 
the PSA monitoring (127). However, these criteria have 
not been validated for use with FT, in which considerable 
amount of functional prostate parenchyma is preserved 
which continues to produce physiological PSA. Mandatory 
prostate biopsy one year after treatment is a widely used 
outcome measure in the available literature and provides a 
useful tool in assessing the efficacy of FT (40). Other typical 
triggers for biopsy include rising serum PSA or detection of 
a suspicious lesion on postoperative mpMRI (37,140). The 
2015 expert consensus panel agreed that a residual disease 
GS ≥3+4 in the treated area represents treatment failure (37). 
The expert consensus is that retreatment rates of ≤20% 
after FT are clinically acceptable (37).

As recently described by Valerio et al. (39,40), 3,230 
patients who underwent FT has been analyzed in 37 clinical 
studies using different sources of energy; most studies are 
on focal HIFU (13) and focal cryotherapy (11) whereas 
focal PDT (3), FLA (4), BT (2), IRE (3) and RFA (1) are 
less extensively studied. To date, cryotherapy is the most 
extensively investigated FT strategy (11 series evaluating 
focal cryotherapy in 1,950 patients): OS and disease-specific 
survival were 100% and 100% respectively, the biochemical 
recurrence-free survival was 71–93%, significant residual 
PCa in the treated area ranged from 0% to 6.5% and the 
probability of secondary treatment was 3.3–18.6% after 
9–70 months of follow-up monitoring. Significant adverse 
events, in most parts cases of recto-urethral fistula occurred 
in only 2.5% patients; pad-free continence and erectile 
function preservation were achieved in 100% and 81.5% 
respectively (31,40,141). In HIFU strategies, Valerio et al. 
have taken into account 13 series evaluating focal HIFU in 

346 men (40). Despite the heterogeneity of the materials, 
the methods and the population of the studies, the primary 
results were encouraging, showing a low overall probability 
of transition to secondary local treatment of 7.8%, an 
excellent OS and disease-specific survival of 100% and an 
achievement of 100% in pad-free continence and in erectile 
function preservation. Significant adverse events occurred 
in only 1.5% of cases (40).

Clinical data assessing use of PDT in PCa remains 
limited. In a large series and a pooled analysis of trials, post-
treatment recurrent PCa rates were around 25% at biopsy 
sampling after 6 months and salve RP for locally recurrent 
PCa has been reported safe and effective (123,142,143). 
Significant adverse events occurred in 10.6% (40). Early 
studies have demonstrated the safety and feasibility of 
FLA but studies are small and outcome data are premature 
with the presence of significant cancer in the treated area 
between 2.4–4.8% and secondary treatment in none (40). 
Only 2 series in 339 patients have reported oncological 
outcomes of focal BT with a biochemical recurrence-
free survival rate at the 5-year follow-up of 92% was  
reported (127). In another smaller series a 5% residual PCa 
rate at the treatment site was reported (126,144). IRE has 
been studied in 141 patients, with significant residual PCa 
in the treated area between 2.9% and 19% and transition to 
secondary treatment in 12% (39,80). RFA has been studied 
in only 1 study in 15 men (134).

FT for PCa enables the neurovascular bundles to be 
spared, thereby reducing the risk of sexual dysfunction or 
incontinence. To date, considerable heterogeneity exists in 
the outcome measures used to define post-treatment sexual 
function with either the International Index Of Erectile 
Function (IIEF) or Sexual Healthy Inventory for Men 
(SHIM) questionnaires being used (31,97,122,126,142). 
Rates of erectile range from 0% to 42% for cryotherapy 
(31,145-147), and from 11% to 45% for HIFU (31,148,149). 
Insufficient data are available to determine rates for the 
other FT modalities. Barret et al. compared three groups 
of patients undergoing cryotherapy, HIFU, PDT and 
identified no difference in postoperative IIEF scores 
between treatment groups (4).

Similar to erectile function, preserved continence 
after FT for PCa has not been reported universally but 
seems to do better than in RP: rates of pad-free status 
are reported to be between 85–100% in cryotherapy 
(4,31,40,145,148,149), but there is only limited data for the 
remaining FT modalities. Objective measures including the 
International Prostate Symptom Score (IPSS) have been 
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introduced to quantify lower urinary tract symptoms and 
limited reductions in mean IPSS of 3–8 have been reported 
after cryotherapy, HIFU and PDT up to 6 months after FT 
(4,31,102,142,148,149). 

No formal data are currently available for assessing 
cost-effectiveness but as FT progress, cost reductions in 
equipment and facilities will occur and will correspond 
with a reduction in cost per patient. Minimally invasive 
approaches lead to reductions in length of hospital stay 
and associated inpatient procedures, but patients require 
more stringent follow-up monitoring with costly imaging 
modalities and potential retreatments. 

Conclusions

FT consists in ablation of the index lesion (31,37,40) in 
men with low or moderate risk of clinically significant PCa. 
Although definitive data about long-term cancer control 
are still lacking, FT represents a valid alternative to the 
AS, entailing cancer-related anxiety, and RP, whose adverse 
effects may reduce the patient’s quality of life.

With accurate localization of the index lesion, FT 
can provide uncompromised oncologic outcome with 
significantly less comorbidity and with genito-urinary 
functional preservation.
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